Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Genet Genomics ; 298(5): 1023-1035, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37233800

RESUMO

Repetitive DNA are sequences repeated hundreds or thousands of times and an abundant part of eukaryotic genomes. SatDNA represents the majority of the repetitive sequences, followed by transposable elements. The species Holochilus nanus (HNA) belongs to the rodent tribe Oryzomyini, the most taxonomically diverse of Sigmodontinae subfamily. Cytogenetic studies on Oryzomyini reflect such diversity by revealing an exceptional range of karyotype variability. However, little is known about the repetitive DNA content and its involvement in chromosomal diversification of these species. In the search for a more detailed understanding about the composition of repetitive DNA on the genome of HNA and other species of Oryzomyini, we employed a combination of bioinformatic, cytogenetic and molecular techniques to characterize the repetitive DNA content of these species. RepeatExplorer analysis showed that almost half of repetitive content of HNA genome are composed by Long Terminal Repeats and a less significant portion are composed by Short Interspersed Nuclear Elements and Long Interspersed Nuclear Elements. RepeatMasker showed that more than 30% of HNA genome are composed by repetitive sequences, with two main waves of repetitive element insertion. It was also possible to identify a satellite DNA sequence present in the centromeric region of Oryzomyini species, and a repetitive sequence enriched on the long arm of HNA X chromosome. Also, comparative analysis between HNA genome with and without B chromosome did not evidence any repeat element enriched on the supernumerary, suggesting that B chromosome of HNA is composed by a fraction of repeats from all the genome.


Assuntos
Arvicolinae , Sigmodontinae , Animais , Ratos , Sigmodontinae/genética , Arvicolinae/genética , Áreas Alagadas , Sequências Repetitivas de Ácido Nucleico/genética , Cariótipo , DNA Satélite/genética , Elementos de DNA Transponíveis/genética
2.
Cytogenet Genome Res ; 161(1-2): 6-13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556945

RESUMO

Proechimys species are remarkable for their extensive chromosome rearrangements, representing a good model to understand genome evolution. Herein, we cytogenetically analyzed 3 different cytotypes of Proechimys gr. goeldii to assess their evolutionary relationship. We also mapped the transposable element SINE-B1 on the chromosomes of P. gr. goeldii in order to investigate its distribution among individuals and evaluate its possible contribution to karyotype remodeling in this species. SINE-B1 showed a dispersed distribution along chromosome arms and was also detected at the pericentromeric regions of some chromosomes, including pair 1 and the sex chromosomes, which are involved in chromosome rearrangements. In addition, we describe a new cytotype for P. gr. goeldii, reinforcing the significant role of gross chromosomal rearrangements during the evolution of the genus. The results of FISH with SINE-B1 suggest that this issue should be more deeply investigated for a better understanding of its role in the mechanisms involved in the wide variety of Proechimys karyotypes.


Assuntos
Cromossomos/ultraestrutura , Rearranjo Gênico , Roedores/genética , Elementos Nucleotídeos Curtos e Dispersos , Animais , Bandeamento Cromossômico , Evolução Molecular , Feminino , Genoma , Heterocromatina/química , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Cromossomos Sexuais , América do Sul
3.
Genet Mol Biol ; 44(2): e20200384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877257

RESUMO

Didelphis species have been shown to exhibit very conservative karyotypes, which mainly differ in their constitutive heterochromatin, known to be mostly composed by repetitive DNAs. In this study, we used genome skimming data combined with computational pipelines to identify the most abundant repetitive DNA families of Lutreolina crassicaudata and all six Didelphis species. We found that transposable elements (TEs), particularly LINE-1, endogenous retroviruses, and SINEs, are the most abundant mobile elements in the studied species. Despite overall similar TE proportions, we report that species of the D. albiventris group consistently present a less diverse TE composition and smaller proportions of LINEs and LTRs in their genomes than other studied species. We also identified four new putative satDNAs (sat206, sat907, sat1430 and sat2324) in the genomes of Didelphis species, which show differences in abundance and nucleotide composition. Phylogenies based on satDNA sequences showed well supported relationships at the species (sat1430) and groups of species (sat206) level, recovering topologies congruent with previous studies. Our study is one of the first attempts to present a characterization of the most abundant families of repetitive DNAs of Lutreolina and Didelphis species providing insights into the repetitive DNA composition in the genome landscape of American marsupials.

4.
Genet Mol Biol ; 43(2): e20190342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32427276

RESUMO

The "cut-and-paste" P-element present in some Diptera illustrates two important transposable elements abilities: to move within genomes and to be transmitted between non-mating species, a phenomenon known as horizontal transposon transfer (HTT). Recent studies reported a HTT of the P-element from Drosophila melanogaster to D. simulans. P-elements first appeared in D. simulans European samples collected in 2006 and spread across several populations from Europe, Africa, North America and Japan within seven years. Nevertheless, no P-element was found in South American populations of D. simulans collected between 2002 and 2009. We investigated the presence of the P-element in D. simulans collected in five Brazilian localities between 2018 and 2019, using a combination of methodologies such as PCR, DNA sequencing and FISH on chromosomes. Our experiments revealed the presence of the P-element in all sampled individuals from the five localities. The number of P-elements per individual varied from 11 to 20 copies and truncated copies were also observed. Altogether, our results showed that P-element invasion in D. simulans is at an advanced stage in Brazil and, together with other recent studies, confirms the remarkable rapid invasion of P-elements across worldwide D. simulans populations.

5.
Cytogenet Genome Res ; 157(3): 166-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30630162

RESUMO

Our knowledge of Testudines evolution is limited by the lack of modern cytogenetic data. Compared to other reptiles, there is little information even on chromosome banding, let alone molecular cytogenetic data. Here, we provide detailed information on the karyotype of the European pond turtle Emys orbicularis, a model Emydidae, employing both chromosome banding and molecular cytogenetics. We provide a high-resolution G-banded karyotype and a map of rDNA genes and telomeric sequences using fluorescence in situ hybridization. We test hypotheses of sex-determining mechanisms in Emys by comparative genomic hybridization to determine if Emys has a cryptic sex-specific region. Our results provide valuable data to guide future efforts on genome sequencing and anchoring in Emydidae and for understanding karyotype evolution in Testudines.


Assuntos
Bandeamento Cromossômico/métodos , Mapeamento Cromossômico/métodos , Hibridização in Situ Fluorescente/métodos , Tartarugas/genética , Animais , Bandeamento Cromossômico/veterinária , Mapeamento Cromossômico/veterinária , DNA Ribossômico/genética , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente/veterinária , Masculino , Modelos Biológicos , Telômero/genética
6.
Genome ; 62(1): 31-41, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30481091

RESUMO

Thrichomys Trouessart, 1880 is a genus of echimyid rodents endemic to South America, distributed from northeastern Brazil to Paraguay and Bolivia. Although all the recognized species of this genus have already been karyotyped, detailed comparative cytogenetic analyses have not been performed yet. We karyologically analyzed four species of Thrichomys from different Brazilian states. Our analyses included GTG- and CBG-banding, silver-staining of the nucleolar organizer regions (Ag-NORs), and fluorescent in situ hybridization (FISH) with telomeric and 45S rDNA probes. Comparative GTG-banding suggested that the interspecific variation may result from Robertsonian rearrangements, pericentric and paracentric inversions, centromere repositioning, and heterochromatin variation. FISH with a telomeric probe showed interspecies variation in interstitial telomeric sequences (ITs) distribution. Our results represent the most complete data on the cytogenetics of Thrichomys reported to date and give an insight into the chromosome evolution of this genus.


Assuntos
Cariótipo , Roedores/genética , Animais , Bandeamento Cromossômico , Espécies em Perigo de Extinção , Heterocromatina/genética , Hibridização in Situ Fluorescente , Polimorfismo Genético , Roedores/classificação , Telômero/genética
7.
Chromosoma ; 126(4): 519-529, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834006

RESUMO

Cytogenetics has historically played a key role in research on squirrel monkey (genus Saimiri) evolutionary biology. Squirrel monkeys have a diploid number of 2n = 44, but vary in fundamental number (FN). Apparently, differences in FN have phylogenetic implications and are correlated with geographic regions. A number of hypothetical mechanisms were proposed to explain difference in FN: translocations, heterochromatin, or, most commonly, pericentric inversions. Recently, an additional mechanism, centromere repositioning, was discovered, which can alter chromosome morphology and FN. Here, we used chromosome banding, chromosome painting, and BAC-FISH to test these hypotheses. We demonstrate that centromere repositioning on chromosomes 5 and 15 is the mechanism that accounts for differences in FN. Current phylogenomic trees of platyrrhines provide a temporal framework for evolutionary new centromeres (ENC) in Saimiri. The X-chromosome ENC could be up to 15 million years (my) old that on chromosome 5 as recent as 0.3 my. The chromosome 15 ENC is intermediate, as young as 2.24 my. All ENC have abundant satellite DNAs indicating that the maturation process was fairly rapid. Callithrix jacchus was used as an outgroup for the BAC-FISH data analysis. Comparison with scaffolds from the S. boliviensis genome revealed an error in the last marmoset genome release. Future research including at the sequence level will provide better understanding of chromosome evolution in Saimiri and other platyrrhines. Probably other cases of differences in chromosome morphology and FN, both within and between taxa, will be shown to be due to centromere repositioning and not pericentric inversions.


Assuntos
Centrômero/genética , Cariótipo , Saimiri/genética , Animais , Centrômero/fisiologia , Inversão Cromossômica , Coloração Cromossômica , Análise Citogenética , Evolução Molecular , Filogenia , Translocação Genética
8.
J Mol Evol ; 86(6): 353-364, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934734

RESUMO

Despite their essential role in the process of chromosome segregation in eukaryotes, kinetochore proteins are highly diverse across species, being lost, duplicated, created, or diversified during evolution. Based on comparative genomics, the duplication of the inner kinetochore proteins CenH3 and Cenp-C, which are interdependent in their roles of establishing centromere identity and function, can be said to be rare in animals. Surprisingly, the Drosophila CenH3 homolog Cid underwent four independent duplication events during evolution. Particularly interesting are the highly diverged Cid1 and Cid5 paralogs of the Drosophila subgenus, which are probably present in over one thousand species. Given that CenH3 and Cenp-C likely co-evolve as a functional unit, we investigated the molecular evolution of Cenp-C in species of Drosophila. We report yet another Cid duplication (leading to Cid6) within the Drosophila subgenus and show that not only Cid, but also Cenp-C is duplicated in the entire subgenus. The Cenp-C paralogs, which we named Cenp-C1 and Cenp-C2, are highly divergent. Both Cenp-C1 and Cenp-C2 retain key motifs involved in centromere localization and function, while some functional motifs are conserved in an alternate manner between the paralogs. Interestingly, both Cid5 and Cenp-C2 are male germline-biased and evolved adaptively. However, it is currently unclear if the paralogs subfunctionalized or if the new copies acquired a new function. Our findings point towards a specific inner kinetochore composition in a specific context (i.e., spermatogenesis), which could prove valuable for the understanding of how the extensive kinetochore diversity is related to essential cellular functions.


Assuntos
Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Duplicação Gênica , Genes de Insetos , Células Germinativas/metabolismo , Animais , Viés , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/genética , Proteínas de Drosophila/metabolismo , Funções Verossimilhança , Masculino , Filogenia
9.
Genome ; 61(10): 771-776, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30222938

RESUMO

Here we present, for the first time, the complete chromosome painting map of Saguinus midas, the red-handed tamarin. Chromosome banding and painting with human chromosome-specific probes were used to compare the karyotype of this species with those of four other Neotropical primates of the subfamily Callitrichinae: Leontopithecus rosalia, Callithrix geoffroyi, C. penicillata, and Mico argentatus. The chromosome painting map of S. midas was identical to that of L. rosalia and other previously studied tamarin species (genera Saguinus and Leontopithecus). The three marmoset species studied (genera Callithrix and Mico) differed in the painting pattern of four human probes (chromosomes 1, 2, 10, and 16). These paints identified the presence or absence of chromosome associations HSA 1/10 and 2/16 in these taxa. By integrating our data with those from the literature, we were able to propose an ancestral Callitrichinae karyotype. The genera Saguinus and Leontopithecus (tamarins) conserve the ancestral Callitrichinae karyotype, while Mico and Callithrix (marmosets) show more derived karyotypes due to chromosome translocations and fissions that occurred during the evolution of these taxa.


Assuntos
Callitrichinae/genética , Coloração Cromossômica/veterinária , Cromossomos de Mamíferos/genética , Saguinus/genética , Animais , Callimico/genética , Callithrix/genética , Linhagem Celular , Coloração Cromossômica/métodos , Cromossomos Humanos/genética , Sequência Conservada , Sondas de DNA/genética , Evolução Molecular , Humanos , Cariótipo , Leontopithecus/genética , Masculino , Filogenia
10.
Biol Lett ; 14(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29386361

RESUMO

Satellite DNAs (satDNAs) are major components of eukaryote genomes. However, because of their quick divergence, the evolutionary origin of a given satDNA family can rarely be determined. Herein we took advantage of available primate sequenced genomes to determine the origin of the CapA satDNA (approx. 1500 bp long monomers), first described in the tufted capuchin monkey Sapajus apella We show that CapA is an abundant satDNA in Platyrrhini, whereas in the genomes of most eutherian mammals, including humans, this sequence is present only as a single copy located within a large intron of the NOS1AP (nitric oxide synthase 1 adaptor protein) gene. Our data suggest that this intronic CapA-like sequence gave rise to the CapA satDNA and we discuss possible mechanisms implicated in this event. This is the first report to our knowledge of a single copy intronic sequence giving origin to a satDNA that reaches up to 100 000 copies in some genomes.


Assuntos
DNA Satélite/genética , Evolução Molecular , Íntrons/genética , Platirrinos/genética , Animais , Eutérios/genética , Humanos , Análise de Sequência de DNA
11.
Cytogenet Genome Res ; 151(2): 82-88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278505

RESUMO

We studied the chromosomes of Callicebus nigrifrons with conventional and molecular cytogenetic methods. Our chromosome painting analysis in C. nigrifrons together with previous reports allowed us to hypothesize an ancestral Callicebinae karyotype with 2n = 48. The associations of human chromosomes (HSA) 2/22, 7/15, 10/11, and the inverted HSA2/16 would link Callicebus, Cheracebus, and Plecturocebus and would thus be present in the ancestral Callicebinae karyotype. Four fusions (HSA1b/1c, 3c/8b, 13/20, and 14/15/3/21) and 1 fission (HSA2/22) are synapomorphies of Callicebus. The associations HSA3/15 and HSA3/9 are chromosome features linking Callicebus and Cheracebus, whereas the association HSA13/17 would represent a link between Callicebus and the moloch group (Plecturocebus). Only 6 of the 33 recognized titi monkey species have now been painted with human chromosome-specific probes. Further analyses are needed to clarify the phylogenomic relationships in this species-rich group.


Assuntos
Coloração Cromossômica/métodos , Pitheciidae/genética , Animais , Evolução Biológica , Cromossomos de Mamíferos , Evolução Molecular , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariótipo
12.
Chromosome Res ; 23(3): 597-613, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26408292

RESUMO

Drosophila INterspersed Elements (DINEs) constitute an abundant but poorly understood group of Helitrons present in several Drosophila species. The general structure of DINEs includes two conserved blocks that may or not contain a region with tandem repeats in between. These central tandem repeats (CTRs) are similar within species but highly divergent between species. It has been assumed that CTRs have independent origins. Herein, we identify a subset of DINEs, termed DINE-TR1, which contain homologous CTRs of approximately 150 bp. We found DINE-TR1 in the sequenced genomes of several Drosophila species and in Bactrocera tryoni (Acalyptratae, Diptera). However, interspecific high sequence identity (∼ 88 %) is limited to the first ∼ 30 bp of each tandem repeat, implying that evolutionary constraints operate differently over the monomer length. DINE-TR1 is unevenly distributed across the Drosophila phylogeny. Nevertheless, sequence analysis suggests vertical transmission. We found that CTRs within DINE-TR1 have independently expanded into satellite DNA-like arrays at least twice within Drosophila. By analyzing the genome of Drosophila virilis and Drosophila americana, we show that DINE-TR1 is highly abundant in pericentromeric heterochromatin boundaries, some telomeric regions and in the Y chromosome. It is also present in the centromeric region of one autosome from D. virilis and dispersed throughout several euchromatic sites in both species. We further found that DINE-TR1 is abundant at piRNA clusters, and small DINE-TR1-derived RNA transcripts (∼25 nt) are predominantly expressed in the testes and the ovaries, suggesting active targeting by the piRNA machinery. These features suggest potential piRNA-mediated regulatory roles for DINEs at local and genome-wide scales in Drosophila.


Assuntos
Drosophila/genética , Estruturas Genéticas , Genoma de Inseto , Genômica , Sequências Repetitivas Dispersas , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , DNA Satélite , Regulação da Expressão Gênica , Genômica/métodos , Gônadas/metabolismo , Heterocromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Especificidade de Órgãos/genética , Filogenia , Cromossomos Politênicos/genética , RNA Interferente Pequeno/genética
13.
Genome ; 57(1): 1-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24564210

RESUMO

Phyllomys (Echimyidae, Rodentia) is a genus of Neotropical rodents with available cytogenetic data restricted to six out of 13 species, mainly based on simple staining methods, without detailed analyses. In this work, we present new karyotypes for Phyllomys lamarum (diploid number 2n = 56, fundamental number or number of autosomal arms FN = 102) and Phyllomys sp. (2n = 74, FN = 140) from the state of Minas Gerais, southeastern Brazil. We provide the first GTG- and CBG-banding patterns, silver-staining of the nucleolar organizer regions (Ag-NORs), and fluorescence in situ hybridization (FISH) with telomeric and 45S rDNA probes of Phyllomys. In addition to examining their chromosomes and phenotypic characters, we sequenced mitochondrial DNA from the specimens analyzed to confirm their taxonomic identification. The comparison of the distinctive chromosome complements of our specimens with those of other species of Phyllomys already published allowed us to conclude that chromosome data may be very useful for the taxonomy of the genus, as no two species analyzed presented the same diploid and fundamental numbers (2n and FN).


Assuntos
Análise Citogenética/métodos , Cariótipo , Roedores/classificação , Roedores/genética , Animais , Brasil , Bandeamento Cromossômico , Cromossomos de Mamíferos/genética , DNA Mitocondrial/genética , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente , Masculino , Filogenia , Ratos , Análise de Sequência de DNA
14.
Gene ; : 148781, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029769

RESUMO

This study aimed to analyze the distribution of short interspersed elements (SINEs) in the chromosomes of five species of rodents of the genus Proechimys and in a variant karyotype of P. guyannensis. Molecular cytogenetic techniques were used to characterize the sequences of the B1, B4, MAR and THER SINEs, which were used as probes for hybridization in metaphase chromosomes. A wide distribution of SINEs was observed in the chromosomes of the Proechimys species examined, thus indicating differentiation of these retroelements. The signal of the B4 SINE was more evident than that of the B1 SINE, especially in P. echinothrix, P. longicaudatus, and P. cuvieri. Although the signal of the MAR SINE was more explosive than that of the THER SINE, in the species P. echinothrix, P. guyannensis (2n = 46) and P. longicaudatus, its distribution in the karyotypes was similar. The signals of these retroelements occurred at specific heterochromatic sites and were centromeric/pericentromeric and at the terminal regions in most chromosomes. This appears to be a typical distribution pattern of the SINEs and may indicate involvement with rearrangements during karyotypic diversification in Proechimys. The variation of the SINEs in the genome of Proechimys species demonstrates that these elements are distributed in a specific way in this genus and the preference for some sites, considered hotspots for chromosomal breakage, allows us to propose that these elements are related to the karyotypic evolution of Proechimys.

15.
BMC Evol Biol ; 12: 36, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22429690

RESUMO

BACKGROUND: Xenarthra (sloths, armadillos and anteaters) represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. RESULTS: Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome). B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4). The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. CONCLUSIONS: Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly.


Assuntos
Cromossomos/genética , Evolução Molecular , Filogenia , Bichos-Preguiça/genética , Animais , Coloração Cromossômica , Humanos , Cariótipo
16.
Life Sci Alliance ; 5(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304430

RESUMO

This study aimed to understand the impact of LINE-1 and SINE-B1 retroelements on the architecture and karyotypic diversification of five rodent species of the genus Proechimys from different regions of the Amazon. Karyotype comparisons were performed using fluorescent interspecific in situ hybridization. The L1 and B1 retroelements showed a non-random arrangement and a conserved pattern when the genomes of the five species of Proechimys were compared, including the two cytotypes of Proechimys guyannensis The signal homeology among the chromosomes and the degree of similarity among the formed clusters indicate rearrangements such as fusion/fission, and demonstrates that these retroelements can behave as derived characters shared in Proechimys The differentiated distribution and organization of these retroelements in the karyotypes and in the chromosomal fiber, respectively, may represent a strong indication of their role as generating sources of karyotypic diversity in the genus Proechimys and provide insights into the evolutionary relationships between taxa.


Assuntos
Retroelementos , Roedores , Animais , Cromossomos , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Roedores/genética
17.
Genes (Basel) ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478118

RESUMO

The study of vertebrate genome evolution is currently facing a revolution, brought about by next generation sequencing technologies that allow researchers to produce nearly complete and error-free genome assemblies. Novel approaches however do not always provide a direct link with information on vertebrate genome evolution gained from cytogenetic approaches. It is useful to preserve and link cytogenetic data with novel genomic discoveries. Sequencing of DNA from single isolated chromosomes (ChromSeq) is an elegant approach to determine the chromosome content and assign genome assemblies to chromosomes, thus bridging the gap between cytogenetics and genomics. The aim of this paper is to describe how ChromSeq can support the study of vertebrate genome evolution and how it can help link cytogenetic and genomic data. We show key examples of ChromSeq application in the refinement of vertebrate genome assemblies and in the study of vertebrate chromosome and karyotype evolution. We also provide a general overview of the approach and a concrete example of genome refinement using this method in the species Anolis carolinensis.


Assuntos
Cromossomos/genética , Análise Citogenética/métodos , Genômica/métodos , Análise de Sequência de DNA/métodos , Vertebrados/genética , Animais
18.
Front Genet ; 12: 694866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504514

RESUMO

Trichechus manatus and Trichechus inunguis are the two Sirenia species that occur in the Americas. Despite their increasing extinction risk, many aspects of their biology remain understudied, including the repetitive DNA fraction of their genomes. Here we used the sequenced genome of T. manatus and TAREAN to identify satellite DNAs (satDNAs) in this species. We report the first description of TMAsat, a satDNA comprising ~0.87% of the genome, with ~684bp monomers and centromeric localization. In T. inunguis, TMAsat showed similar monomer length, chromosome localization and conserved CENP-B box-like motifs as in T. manatus. We also detected this satDNA in the Dugong dugon and in the now extinct Hydrodamalis gigas genomes. The neighbor-joining tree shows that TMAsat sequences from T. manatus, T. inunguis, D. dugon, and H. gigas lack species-specific clusters, which disagrees with the predictions of concerted evolution. We detected a divergent TMAsat-like homologous sequence in elephants and hyraxes, but not in other mammals, suggesting this sequence was already present in the common ancestor of Paenungulata, and later became a satDNA in the Sirenians. This is the first description of a centromeric satDNA in manatees and will facilitate the inclusion of Sirenia in future studies of centromeres and satDNA biology.

19.
Sci Rep ; 10(1): 13501, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764555

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Sci Rep ; 10(1): 19202, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154538

RESUMO

Choloepus, the only extant genus of the Megalonychidae family, is composed of two living species of two-toed sloths: Choloepus didactylus and C. hoffmanni. In this work, we identified and characterized the main satellite DNAs (satDNAs) in the sequenced genomes of these two species. SATCHO1, the most abundant satDNA in both species, is composed of 117 bp tandem repeat sequences. The second most abundant satDNA, SATCHO2, is composed of ~ 2292 bp tandem repeats. Fluorescence in situ hybridization in C. hoffmanni revealed that both satDNAs are located in the centromeric regions of all chromosomes, except the X. In fact, these satDNAs present some centromeric characteristics in their sequences, such as dyad symmetries predicted to form secondary structures. PCR experiments indicated the presence of SATCHO1 sequences in two other Xenarthra species: the tree-toed sloth Bradypus variegatus and the anteater Myrmecophaga tridactyla. Nevertheless, SATCHO1 is present as large tandem arrays only in Choloepus species, thus likely representing a satDNA exclusively in this genus. Our results reveal interesting features of the satDNA landscape in Choloepus species with the potential to aid future phylogenetic studies in Xenarthra and mammalian genomes in general.


Assuntos
DNA Satélite/genética , Bichos-Preguiça/genética , Animais , Genoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA