Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol ; 200(4): 1513-1526, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305435

RESUMO

Agonists to the TNF/TNFR costimulatory receptors CD134 (OX40) and CD137 (4-1BB) elicit antitumor immunity. Dual costimulation with anti-CD134 plus anti-CD137 is particularly potent because it programs cytotoxic potential in CD8+ and CD4+ T cells. Cytotoxicity in dual-costimulated CD4 T cells depends on the T-box transcription factor eomesodermin (Eomes), which we report is induced via a mechanism that does not rely on IL-2, in contrast to CD8+ CTL, but rather depends on the CD8 T cell lineage commitment transcription factor Runx3, which supports Eomes expression in mature CD8+ CTLs. Further, Eomes and Runx3 were indispensable for dual-costimulated CD4 T cells to mediate antitumor activity in an aggressive melanoma model. Runx3 is also known to be expressed in standard CD4 Th1 cells where it fosters IFN-γ expression; however, the CD4 T cell lineage commitment factor ThPOK represses transcription of Eomes and other CD8 lineage genes, such as Cd8a Hence, CD4 T cells can differentiate into Eomes+ cytotoxic CD4+CD8+ double-positive T cells by terminating ThPOK expression. In contrast, dual-costimulated CD4 T cells express Eomes, despite the continued expression of ThPOK and the absence of CD8α, indicating that Eomes is selectively released from ThPOK repression. Finally, although Eomes was induced by CD137 agonist, but not CD134 agonist, administered individually, CD137 agonist failed to induce CD134-/- CD4 T cells to express Eomes or Runx3, indicating that both costimulatory pathways are required for cytotoxic Th1 programming, even when only CD137 is intentionally engaged with a therapeutic agonist.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Melanoma Experimental/imunologia , Proteínas com Domínio T/biossíntese , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Diferenciação Celular/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Imunoterapia , Ativação Linfocitária/imunologia , Melanoma Experimental/metabolismo , Camundongos , Camundongos Transgênicos , Receptores OX40/agonistas , Receptores OX40/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
2.
Cancer Immunol Immunother ; 67(4): 605-613, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29327109

RESUMO

Combination immunotherapies utilizing complementary modalities that target distinct tumor attributes or immunosuppressive mechanisms, or engage different arms of the antitumor immune response, can elicit greater therapeutic efficacy than the component monotherapies. Increasing the number of agents included in a therapeutic cocktail can further increase efficacy, however, this approach poses numerous challenges for clinical translation. Here, a novel platform to simplify combination immunotherapy by covalently linking immunotherapeutic agonists to the costimulatory receptors CD134 and CD137 into a single heterodimeric drug, "OrthomAb", is shown. This reagent not only retains costimulatory T cell activity, but also elicits unique T cell functions that are not programmed by either individual agonist, and preferentially expands effector T cells over Tregs. Finally, in an aggressive melanoma model OrthomAb elicits better therapeutic efficacy compared to the unlinked agonists. This demonstration that two drugs can be combined into one provides a framework for distilling complex combination drug cocktails into simpler delivery platforms.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Melanoma Experimental/tratamento farmacológico , Receptores OX40/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Diferenciação Celular , Feminino , Ativação Linfocitária , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores OX40/antagonistas & inibidores , Células Tumorais Cultivadas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores
3.
J Immunol ; 196(11): 4510-21, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183621

RESUMO

Staphylococcus aureus enterotoxins cause debilitating systemic inflammatory responses, but how they spread systemically and trigger inflammatory cascade is unclear. In this study, we showed in mice that after inhalation, Staphylococcus aureus enterotoxin A rapidly entered the bloodstream and induced T cells to orchestrate systemic recruitment of inflammatory monocytes and neutrophils. To study the mechanism used by specific T cells that mediate this process, a systems approach revealed inducible and noninducible pathways as potential targets. It was found that TNF caused neutrophil entry into the peripheral blood, whereas CD28 signaling, but not TNF, was needed for chemotaxis of inflammatory monocytes into blood and lymphoid tissue. However, both pathways triggered local recruitment of neutrophils into lymph nodes. Thus, our findings revealed a dual mechanism of monocyte and neutrophil recruitment by T cells relying on overlapping and nonoverlapping roles for the noninducible costimulatory receptor CD28 and the inflammatory cytokine TNF. During sepsis, there might be clinical value in inhibiting CD28 signaling to decrease T cell-mediated inflammation and recruitment of innate cells while retaining bioactive TNF to foster neutrophil circulation.


Assuntos
Antígenos CD28/imunologia , Enterotoxinas/administração & dosagem , Enterotoxinas/imunologia , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Inalação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia
4.
J Immunol ; 196(1): 124-34, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26573834

RESUMO

CD134- and CD137-primed CD8 T cells mount powerful effector responses upon recall, but even without recall these dual-costimulated T cells respond to signal 3 cytokines such as IL-12. We searched for alternative signal 3 receptor pathways and found the IL-1 family member IL-36R. Although IL-36 alone did not stimulate effector CD8 T cells, in combination with IL-12, or more surprisingly IL-2, it induced striking and rapid TCR-independent IFN-γ synthesis. To understand how signal 3 responses functioned in dual-costimulated T cells we showed that IL-2 induced IL-36R gene expression in a JAK/STAT-dependent manner. These data help delineate a sequential stimulation process where IL-2 conditioning must precede IL-36 for IFN-γ synthesis. Importantly, this responsive state was transient and functioned only in effector T cells capable of aerobic glycolysis. Specifically, as the effector T cells metabolized glucose and consumed O2, they also retained potential to respond through IL-36R. This suggests that T cells use innate receptor pathways such as the IL-36R/axis when programmed for aerobic glycolysis. To explore a function for IL-36R in vivo, we showed that dual costimulation therapy reduced B16 melanoma tumor growth while increasing IL-36R gene expression. In summary, cytokine therapy to eliminate tumors may target effector T cells, even outside of TCR specificity, as long as the effectors are in the correct metabolic state.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glucose/metabolismo , Glicólise/fisiologia , Melanoma Experimental/imunologia , Receptores de Interleucina-1/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Inflamação/imunologia , Interferon gama/biossíntese , Interleucina-12/imunologia , Interleucina-2/imunologia , Ativação Linfocitária/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Consumo de Oxigênio , Receptores de Interleucina-1/biossíntese , Receptores de Interleucina-1/genética , Receptores OX40/imunologia , Transdução de Sinais/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
5.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L177-L191, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473322

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious, often fatal condition without available pharmacotherapy. Although the role of innate cells in ARDS has been studied extensively, emerging evidence suggests that T cells may be involved in disease etiology. Staphylococcus aureus enterotoxins are potent T-cell mitogens capable of triggering life-threatening shock. We demonstrate that 2 days after inhalation of S. aureus enterotoxin A, mice developed T cell-mediated increases in vascular permeability, as well as expression of injury markers and caspases in the lung. Pulmonary endothelial cells underwent sequential phenotypic changes marked by rapid activation coinciding with inflammatory events secondary to T-cell priming, followed by reductions in endothelial cell number juxtaposing simultaneous T-cell expansion and cytotoxic differentiation. Although initial T-cell activation influenced the extent of lung injury, CD54 (ICAM-1) blocking antibody administered well after enterotoxin exposure substantially attenuated pulmonary barrier damage. Thus CD54-targeted therapy may be a promising candidate for further exploration into its potential utility in treating ARDS patients.


Assuntos
Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Pulmão/patologia , Linfócitos T/imunologia , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/metabolismo , Administração por Inalação , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Contagem de Células , Quimiocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Enterotoxinas/administração & dosagem , Enterotoxinas/toxicidade , Feminino , Inflamação/complicações , Inflamação/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade , Linfócitos T/efeitos dos fármacos
6.
Mucosal Immunol ; 11(5): 1398-1407, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29907868

RESUMO

Immune-mediated lung is considered the result of an exacerbated innate injury immune response, although a role for adaptive lymphocytes is emerging. αß T cells specific for S. aureus enterotoxin A orchestrate a Tγδ17 response during lung injury. However, the mechanism driving IL-17 production is unclear. Here, we show a role for IL-2 triggering IL-17 production by lung granular γδ T cells as IL-17 synthesis and neutrophil recruitment was reduced by IL-2 blocking mAbs in vitro and in vivo. Mass cytometry analysis revealed that lung γδ T cells responded directly to IL-2 as evident from STAT5 phosphorylation and RoRγt expression. IL-2 receptor blocking mAbs and JAK inhibition impaired STAT5 phosphorylation and IL-17 release. Moreover, inhalation of S. aureus enterotoxin A induced IL-2 secretion and caspase-1-dependent IL-1ß activation to drive IL-17 production. This T-cell-mediated inflammasome-dependent IL-17 response is maximum when lung Tγδ17 cells were sequentially stimulated first with IL-2 then IL-1ß. Interestingly, when IL-2 is given therapeutically to cancer patients it carries a known risk of lung injury that is largely indistinguishable from that seen in sepsis. Hence, this novel mechanism reveals therapeutic targets treating both acute lung injury and high-dose IL-2 toxicity in cancer.


Assuntos
Interleucina-17/imunologia , Interleucina-1beta/imunologia , Interleucina-2/imunologia , Pulmão/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/imunologia , Caspase 1/imunologia , Janus Quinases/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Fosforilação/imunologia , Fator de Transcrição STAT5/imunologia , Saccharomyces cerevisiae/imunologia
7.
PLoS One ; 10(10): e0141548, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509442

RESUMO

Pathogen and cellular by-products released during infection or trauma are critical for initiating mucosal inflammation. The localization of these factors, their bioactivity and natural countermeasures remain unclear. This concept was studied in mice undergoing pulmonary inflammation after Staphylococcal enterotoxin A (SEA) inhalation. Highly purified bronchoalveolar lavage fluid (BALF) fractions obtained by sequential chromatography were screened for bioactivity and subjected to mass spectrometry. The Inflammatory and inhibitory potentials of the identified proteins were measured using T cells assays. A potent pro-inflammatory factor was detected in BALF, and we hypothesized SEA could be recovered with its biological activity. Highly purified BALF fractions with bioactivity were subjected to mass spectrometry. SEA was the only identified protein with known inflammatory potential, and unexpectedly, it co-purified with immunosuppressive proteins. Among them was lactoferrin, which inhibited SEA and anti-CD3/-CD28 stimulation by promoting T cell death and reducing TNF synthesis. Higher doses of lactoferrin were required to inhibit effector compared to resting T cells. Inhibition relied on the continual presence of lactoferrin rather than a programming event. The data show a fraction of bioactive SEA resided in a mucosal niche within BALF even after the initiation of inflammation. These results may have clinical value in human diagnostic since traces levels of SEA can be detected using a sensitive bioassay, and may help pinpoint potential mediators of lung inflammation when molecular approaches fail.


Assuntos
Enterotoxinas/metabolismo , Pneumonia Estafilocócica/metabolismo , Mucosa Respiratória/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Morte Celular/efeitos dos fármacos , Citocinas/biossíntese , Modelos Animais de Doenças , Enterotoxinas/imunologia , Mediadores da Inflamação/metabolismo , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Camundongos , Camundongos Transgênicos , Pneumonia Estafilocócica/imunologia , Transporte Proteico , Mucosa Respiratória/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
PLoS One ; 8(6): e65021, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755170

RESUMO

Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920's a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole) were compared between BTBR and control (C57Bl/6) mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.


Assuntos
Transtorno Autístico/dietoterapia , Dieta Cetogênica , Convulsões/dietoterapia , Animais , Benzazepinas , Ondas Encefálicas , Região CA3 Hipocampal/fisiopatologia , Córtex Cerebral/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente
9.
Neurosci Lett ; 500(1): 1-5, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21693172

RESUMO

The neuromodulator adenosine is an endogenous sleep promoter, neuroprotector and anticonvulsant, and people with autism often suffer from sleep disruption and/or seizures. We hypothesized that increasing adenosine can decrease behavioral symptoms of autism spectrum disorders, and, based on published research, specific physiological stimuli are expected to increase brain adenosine. To test the relationship between adenosine and autism, we developed a customized parent-based questionnaire to assess child participation in activities expected to influence adenosine and quantify behavioral changes following these experiences. Parents were naive to study hypotheses and all conditions were pre-assigned. Results demonstrate significantly better behavior associated with events pre-established as predicted to increase rather than decrease or have no influence on adenosine. Understanding the physiological relationship between adenosine and autism could open new therapeutic strategies--potentially preventing seizures, improving sleep, and reducing social and behavioral dysfunction.


Assuntos
Adenosina/fisiologia , Transtorno Autístico/psicologia , Comportamento , Neurotransmissores/fisiologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pais , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA