Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 33(1): 1064-1073, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29909747

RESUMO

Carbonic anhydrase (CA) IX is a hypoxia inducible enzyme that is highly expressed in solid tumours. Therefore, it has been considered as an anticancer target using specific chemical inhibitors. The nitroimidazoles DTP338 and DTP348 have been shown to inhibit CA IX in nanomolar range in vitro and reduce extracellular acidification in hypoxia, and impair tumour growth. We screened these compounds for toxicity using zebrafish embryos and measured their in vivo effects on human CA IX in Xenopus oocytes. In the toxicity screening, the LD50 for both compounds was 3.5 mM. Neither compound showed apparent toxicity below 300 µM concentration. Above this concentration, both compounds altered the movement of zebrafish larvae. The IC50 was 0.14 ± 0.02 µM for DTP338 and 19.26 ± 1.97 µM for DTP348, suggesting that these compounds efficiently inhibit CA IX in vivo. Our results suggest that these compounds can be developed as drugs for cancer therapy.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Nitroimidazóis/farmacologia , Oócitos/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium marinum/efeitos dos fármacos , Nitroimidazóis/síntese química , Nitroimidazóis/química , Oócitos/metabolismo , Relação Estrutura-Atividade , Xenopus , Peixe-Zebra/embriologia
2.
mSystems ; 6(3): e0050021, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34156290

RESUMO

The complex cell wall and biofilm matrix (ECM) act as key barriers to antibiotics in mycobacteria. Here, the ECM and envelope proteins of Mycobacterium marinum ATCC 927, a nontuberculous mycobacterial model, were monitored over 3 months by label-free proteomics and compared with cell surface proteins on planktonic cells to uncover pathways leading to virulence, tolerance, and persistence. We show that ATCC 927 forms pellicle-type and submerged-type biofilms (PBFs and SBFs, respectively) after 2 weeks and 2 days of growth, respectively, and that the increased CelA1 synthesis in this strain prevents biofilm formation and leads to reduced rifampicin tolerance. The proteomic data suggest that specific changes in mycolic acid synthesis (cord factor), Esx1 secretion, and cell wall adhesins explain the appearance of PBFs as ribbon-like cords and SBFs as lichen-like structures. A subpopulation of cells resisting 64× MIC rifampicin (persisters) was detected in both biofilm subtypes and already in 1-week-old SBFs. The key forces boosting their development could include subtype-dependent changes in asymmetric cell division, cell wall biogenesis, tricarboxylic acid/glyoxylate cycle activities, and energy/redox/iron metabolisms. The effect of various ambient oxygen tensions on each cell type and nonclassical protein secretion are likely factors explaining the majority of the subtype-specific changes. The proteomic findings also imply that Esx1-type protein secretion is more efficient in planktonic (PL) and PBF cells, while SBF may prefer both the Esx5 and nonclassical pathways to control virulence and prolonged viability/persistence. In conclusion, this study reports the first proteomic insight into aging mycobacterial biofilm ECMs and indicates biofilm subtype-dependent mechanisms conferring increased adaptive potential and virulence of nontuberculous mycobacteria. IMPORTANCE Mycobacteria are naturally resilient, and mycobacterial infections are notoriously difficult to treat with antibiotics, with biofilm formation being the main factor complicating the successful treatment of tuberculosis (TB). The present study shows that nontuberculous Mycobacterium marinum ATCC 927 forms submerged- and pellicle-type biofilms with lichen- and ribbon-like structures, respectively, as well as persister cells under the same conditions. We show that both biofilm subtypes differ in terms of virulence-, tolerance-, and persistence-conferring activities, highlighting the fact that both subtypes should be targeted to maximize the power of antimycobacterial treatment therapies.

3.
Dis Model Mech ; 11(1)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29208761

RESUMO

Mycobacterium tuberculosis remains one of the most problematic infectious agents, owing to its highly developed mechanisms to evade host immune responses combined with the increasing emergence of antibiotic resistance. Host-directed therapies aiming to optimize immune responses to improve bacterial eradication or to limit excessive inflammation are a new strategy for the treatment of tuberculosis. In this study, we have established a zebrafish-Mycobacterium marinum natural host-pathogen model system to study induced protective immune responses in mycobacterial infection. We show that priming adult zebrafish with heat-killed Listeria monocytogenes (HKLm) at 1 day prior to M. marinum infection leads to significantly decreased mycobacterial loads in the infected zebrafish. Using rag1-/- fish, we show that the protective immunity conferred by HKLm priming can be induced through innate immunity alone. At 24 h post-infection, HKLm priming leads to a significant increase in the expression levels of macrophage-expressed gene 1 (mpeg1), tumor necrosis factor α (tnfa) and nitric oxide synthase 2b (nos2b), whereas superoxide dismutase 2 (sod2) expression is downregulated, implying that HKLm priming increases the number of macrophages and boosts intracellular killing mechanisms. The protective effects of HKLm are abolished when the injected material is pretreated with nucleases or proteinase K. Importantly, HKLm priming significantly increases the frequency of clearance of M. marinum infection by evoking sterilizing immunity (25 vs 3.7%, P=0.0021). In this study, immune priming is successfully used to induce sterilizing immunity against mycobacterial infection. This model provides a promising new platform for elucidating the mechanisms underlying sterilizing immunity and to develop host-directed treatment or prevention strategies against tuberculosis.This article has an associated First Person interview with the first author of the paper.


Assuntos
Apresentação Cruzada/imunologia , Imunidade Inata , Listeria monocytogenes/fisiologia , Mycobacterium tuberculosis/imunologia , Esterilização , Tuberculose/imunologia , Tuberculose/microbiologia , Peixe-Zebra/microbiologia , Envelhecimento , Animais , Carga Bacteriana , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Temperatura Alta , Larva , Macrófagos/microbiologia , Masculino , Mycobacterium marinum/imunologia , Ácidos Nucleicos/metabolismo , Consumo de Oxigênio , Tuberculose/prevenção & controle , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA