Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 201(5): 1522-1535, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045971

RESUMO

Tissue-resident CD8+ T cells (Trm) can rapidly eliminate virally infected cells, but their heterogeneous spatial distribution may leave gaps in protection within tissues. Although Trm patrol prior sites of viral replication, murine studies suggest they do not redistribute to adjacent uninfected sites to provide wider protection. We perform mathematical modeling of HSV-2 shedding in Homo sapiens and predict that infection does not induce enough Trm in many genital tract regions to eliminate shedding; a strict spatial distribution pattern of mucosal CD8+ T cell density is maintained throughout chronic infection, and trafficking of Trm across wide genital tract areas is unlikely. These predictions are confirmed with spatial analysis of CD8+ T cell distribution in histopathologic specimens from human genital biopsies. Further simulations predict that the key mechanistic correlate of protection following therapeutic HSV-2 vaccination would be an increase in total Trm rather than spatial reassortment of these cells. The fixed spatial structure of Trm induced by HSV-2 is sufficient for rapid elimination of infected cells but only in a portion of genital tract microregions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Memória Imunológica , Modelos Imunológicos , Eliminação de Partículas Virais/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Doença Crônica , Herpes Genital/patologia , Humanos , Camundongos
2.
PLoS Comput Biol ; 9(7): e1003131, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861664

RESUMO

Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA), the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs), TAL effector nucleases (TALENs), and CRISPR-associated system 9 (Cas9) proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which will in turn provide vital information for dose selection for potential curative trials in animals and ultimately humans.


Assuntos
DNA/metabolismo , Terapia Genética , Hepatite B/terapia , Modelos Teóricos , Reparo do DNA , Vetores Genéticos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA