Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Struct Biol ; 214(2): 107856, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35427781

RESUMO

INTRODUCTION: The central C4 and C5 domains (C4C5) of cardiac myosin binding protein C (cMyBPC) contain a flexible interdomain linker and a cardiac-isoform specific loop. However, their importance in the functional regulation of cMyBPC has not been extensively studied. METHODS AND RESULTS: We expressed recombinant C4C5 proteins with deleted linker and loop regions and performed biophysical experiments to determine each of their structural and dynamic roles. We show that the linker and C5 loop regions modulate the secondary structure and thermal stability of C4C5. Furthermore, we provide evidence through extended molecular dynamics simulations and principle component analyses that C4C5 can adopt a completely bent or latched conformation. The simulation trajectory and interaction network analyses reveal that the completely bent conformation of C4C5 exhibits a specific pattern of residue-level interactions. Therefore, we propose a "hinge-and-latch" mechanism where the linker allows a great degree of flexibility and bending, while the loop aids in achieving a completely bent and latched conformation. Although this may be one of many bent positions that C4C5 can adopt, we illustrate for the first time in molecular detail that this type of large scale conformational change can occur in the central domains of cMyBPC. CONCLUSIONS: Our hinge-and-latch mechanism demonstrates that the linker and loop regions participate in dynamic modulation of cMyBPC's motion and global conformation. These structural and dynamic features may contribute to muscle isoform-specific regulation of actomyosin activity, and have potential implications regarding its ability to propagate or retract cMyBPC's regulatory N-terminal domains.


Assuntos
Citoesqueleto de Actina , Simulação de Dinâmica Molecular , Citoesqueleto de Actina/química , Conformação Proteica , Estrutura Secundária de Proteína
2.
J Neurophysiol ; 126(4): 1172-1189, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469703

RESUMO

Blast-induced hearing difficulties affect thousands of veterans and civilians. The long-term impact of even a mild blast exposure on the central auditory system is hypothesized to contribute to lasting behavioral complaints associated with mild blast traumatic brain injury (bTBI). Although recovery from mild blast has been studied separately over brief or long time windows, few, if any, studies have investigated recovery longitudinally over short-term and longer-term (months) time windows. Specifically, many peripheral measures of auditory function either recover or exhibit subclinical deficits, masking deficits in processing complex, real-world stimuli that may recover differently. Thus, examining the acute time course and pattern of neurophysiological impairment using appropriate stimuli is critical to better understanding and intervening in bTBI-induced auditory system impairments. Here, we compared auditory brainstem response, middle-latency auditory-evoked potentials, and envelope following responses. Stimuli were clicks, tone pips, amplitude-modulated tones in quiet and in noise, and speech-like stimuli (iterated rippled noise pitch contours) in adult male rats subjected to mild blast and sham exposure over the course of 2 mo. We found that blast animals demonstrated drastic threshold increases and auditory transmission deficits immediately after blast exposure, followed by substantial recovery during the window of 7-14 days postblast, although with some deficits remaining even after 2 mo. Challenging conditions and speech-like stimuli can better elucidate mild bTBI-induced auditory deficit during this period. Our results suggest multiphasic recovery and therefore potentially different time windows for treatment, and deficits can be best observed using a small battery of sound stimuli.NEW & NOTEWORTHY Few studies on blast-induced hearing deficits go beyond simple sounds and sparsely track postexposure. Therefore, the recovery arc for potential therapies and real-world listening is poorly understood. Evidence suggested multiple recovery phases over 2 mo postexposure. Hearing thresholds largely recovered within 14 days and partially explained recovery. However, midlatency responses, responses to amplitude modulation in noise, and speech-like pitch sweeps exhibited extended changes, implying persistent central auditory deficits and the importance of subclinical threshold shifts.


Assuntos
Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Traumatismos por Explosões/fisiopatologia , Concussão Encefálica/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Transtornos da Audição/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Estimulação Acústica , Animais , Comportamento Animal/fisiologia , Traumatismos por Explosões/complicações , Concussão Encefálica/etiologia , Modelos Animais de Doenças , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Transtornos da Audição/etiologia , Masculino , Percepção da Altura Sonora/fisiologia , Ratos
3.
ACS Omega ; 7(16): 14189-14202, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35573219

RESUMO

Cardiac myosin binding protein C (cMyBPC) is a critical multidomain protein that modulates myosin cross bridge behavior and cardiac contractility. cMyBPC is principally regulated by phosphorylation of the residues within the M-domain of its N-terminus. However, not much is known about the phosphorylation or other post-translational modification (PTM) landscape of the central C4C5 domains. In this study, the presence of phosphorylation outside the M-domain was confirmed in vivo using mouse models expressing cMyBPC with nonphosphorylatable serine (S) to alanine substitutions. Purified recombinant mouse C4C5 domain constructs were incubated with 13 different kinases, and samples from the 6 strongest kinases were chosen for mass spectrometry analysis. A total of 26 unique phosphorylated peptides were found, representing 13 different phosphorylation sites including 10 novel sites. Parallel reaction monitoring and subsequent mutagenesis experiments revealed that the S690 site (UniProtKB O70468) was the predominant target of PKA and PKG1. We also report 6 acetylation and 7 ubiquitination sites not previously described in the literature. These PTMs demonstrate the possibility of additional layers of regulation and potential importance of the central domains of cMyBPC in cardiac health and disease. Data are available via ProteomeXchange with identifier PXD031262.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA