Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 20(12): 6246-6261, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37975721

RESUMO

Fungal keratitis (FK) is a fungal infection of the cornea, which is part of the eye and causes corneal ulcers and an increased risk of permanent blindness, which is often found in Candida albicans species. Amphotericin B (AMB), which is a group of polyenes as the first-line treatment of FK, is effective in annihilating C. albicans. However, AMB preparations such as eye drops and ointments have major drawbacks, for instance, requiring more frequent administrations, loss of the drug by the drainage process, and rapid elimination in the precornea, which result in low bioavailability of the drug. An ocular dissolving microneedle containing the solid dispersion amphotericin B (DMN-SD-AMB) had been developed using a mixture of poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) polymers, while the solid dispersion AMB (SD-AMB) was contained in the needle as a drug. This study aims to determine the most optimal and safest DMN-SD-AMB formula for the treatment of FK in the eye as well as a solution to overcome the low bioavailability of AMB eye drops and ointment preparations. SD-AMB had been successfully developed, which was characterized by increased antifungal activity and drug release in vitro compared to other treatments. Furthermore, DMN-SD-AMB studies had also been successfully performed with the best formulation, which exhibited the best ex vivo corneal permeation profile and antifungal activity as well as being safe from eye irritation. In addition, an in vivo antifungal activity using a rabbit infection model shows that the number of fungal colonies was 0.98 ± 0.11 log10 CFU/mL (F3), 5.76 ± 0.32 log10 CFU/mL (AMB eye drops), 4.01 ± 0.28 log10 CFU/mL (AMB ointments), and 9.09 ± 0.65 log10 CFU/mL (control), which differed significantly (p < 0.05). All of these results evidence that DMN-SD-AMB is a new approach to developing intraocular preparations for the treatment of FK.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Animais , Coelhos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Úlcera da Córnea/tratamento farmacológico , Candida , Soluções Oftálmicas/uso terapêutico , Candida albicans
2.
J Biomater Sci Polym Ed ; : 1-24, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769614

RESUMO

Periodontitis is a common chronic inflammatory disease primarily caused by the prevalence of bacterial overgrowth resulting in the development of an inflammatory condition that destroys the tooth's supporting tissues and eventual tooth loss. Comparatively, to other treatment methods, it is difficult for topical antibacterial drugs to effectively permeate the biofilm's physical barrier, making conventional therapy for periodontitis more challenging. This novel study combines thermosensitive in situ hydrogel with microparticles (MPs) to enhance the targeted delivery of metronidazole (MET) to the periodontal pocket. Polycaprolactone (PCL) polymer was utilized to produce bacteria-sensitive MPs. Additionally, the study assessed the attributes of MPs and demonstrated an enhancement in the in vitro antibacterial efficacy of MPs towards Staphylococcus aureus (SA) and Escherichia coli (EC). Subsequently, we incorporated MET-MPs into thermosensitive in situ hydrogel formulations using chitosan. The optimized formulations exhibited stability, appropriate gelation temperature, mucoadhesive strength, and viscosity. In vitro permeation tests showed selective and prolonged drug release against SA and EC. Ex vivo experiments demonstrated no significant differences between in situ hydrogel containing pure MET and MET-MPs in biofilm quantity, bacterial counts, and metabolic activity in biofilms. According to in vitro tests and the effectiveness of the antibacterial activity, this study has exhibited a novel methodology for more efficacious therapies for periodontitis. This study aims to utilize MET in MPs to improve its effectiveness, enhance its antibacterial activity, and improve patient treatment outcomes. In further research, the efficacy of the treatment should be investigated in vivo using an appropriate animal model.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38036850

RESUMO

Fluconazole (FLZ) has been widely used in the treatment of infection caused by Candida albicans, including the treatment of vulvovaginal candidiasis (VVC). However, when delivered orally, FLZ faces numerous limitations due to its poor solubility and undergoes the symptoms of first-pass metabolism. In this study, we developed the combinatorial approach of nanocrystals (NCs) and dissolving microneedles (DMNs) for effective local vaginal delivery of FLZ. The formulation containing 1.0% w/v PVA as stabilizer with 12 h of milling time process was found to be an optimal combination to fabricate FLZ as NCs (FLZ-NCs) with optimum size particle and PDI value (less than 0.25). Furthermore, the in vitro release study also showed a superior percentage of FLZ release up to 89.51 ± 7.52%. In combination with the DMNs, the FLZ recovery was 96.45 ± 2.38% with the insertion percentage in average of 76.14 ± 2.28% and height decreased percentage was only 7.53 ± 0.56%. Moreover, the ex vivo investigation and anti-candidiasis activity of DMNs-FLZ-NCs in vaginal model showed better results compared to other conventional preparations, such as film patch and hydrogel containing FLZ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA