Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 129(24): 4576-4591, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27875275

RESUMO

Induction of pluripotency in differentiated cells through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and cellular Myc involves reprogramming at the epigenetic level. Histones and their metabolism governed by histone chaperones constitute an important regulator of epigenetic control. We hypothesized that histone chaperones facilitate or inhibit the course of reprogramming. For the first time, we report here that the downregulation of histone chaperone Aprataxin PNK-like factor (APLF) promotes reprogramming by augmenting the expression of E-cadherin (Cdh1), which is implicated in the mesenchymal-to-epithelial transition (MET) involved in the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Downregulation of APLF in MEFs expedites the loss of the repressive MacroH2A.1 (encoded by H2afy) histone variant from the Cdh1 promoter and enhances the incorporation of active histone H3me2K4 marks at the promoters of the pluripotency genes Nanog and Klf4, thereby accelerating the process of cellular reprogramming and increasing the efficiency of iPSC generation. We demonstrate a new histone chaperone (APLF)-MET-histone modification cohort that functions in the induction of pluripotency in fibroblasts. This regulatory axis might provide new mechanistic insights into perspectives of epigenetic regulation involved in cancer metastasis.


Assuntos
Proteínas de Transporte/metabolismo , Fibroblastos/metabolismo , Chaperonas de Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Reprogramação Celular/genética , Ensaio de Unidades Formadoras de Colônias , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Regulação para Baixo/genética , Embrião de Mamíferos/citologia , Células Epiteliais/citologia , Feminino , Fibroblastos/citologia , Técnicas de Silenciamento de Genes , Células HEK293 , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Lisina/metabolismo , Masculino , Mesoderma/citologia , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Poli-ADP-Ribose , Regiões Promotoras Genéticas/genética , Regulação para Cima/genética
2.
J Biol Chem ; 290(21): 13053-63, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25847244

RESUMO

RUNX1 (Runt-related transcription factor 1) is indispensable for the generation of hemogenic endothelium. However, the regulation of RUNX1 during this developmental process is poorly understood. We investigated the role of the histone chaperone HIRA (histone cell cycle regulation-defective homolog A) from this perspective and report that HIRA significantly contributes toward the regulation of RUNX1 in the transition of differentiating mouse embryonic stem cells from hemogenic to hematopoietic stage. Direct interaction of HIRA and RUNX1 activates the downstream targets of RUNX1 implicated in generation of hematopoietic stem cells. At the molecular level, HIRA-mediated incorporation of histone H3.3 variant within the Runx1 +24 mouse conserved noncoding element is essential for the expression of Runx1 during endothelial to hematopoietic transition. An inactive chromatin at the intronic enhancer of Runx1 in absence of HIRA significantly repressed the transition of cells from hemogenic to hematopoietic fate. We expect that the HIRA-RUNX1 axis might open up a novel approach in understanding leukemogenesis in future.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Endotélio Vascular/citologia , Regulação da Expressão Gênica , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Chaperonas de Histonas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Western Blotting , Proteínas de Ciclo Celular/antagonistas & inibidores , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Endotélio Vascular/metabolismo , Citometria de Fluxo , Imunofluorescência , Células-Tronco Hematopoéticas/metabolismo , Chaperonas de Histonas/antagonistas & inibidores , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/antagonistas & inibidores , Saco Vitelino/citologia , Saco Vitelino/metabolismo
4.
Eur J Cell Biol ; 103(3): 151439, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968704

RESUMO

Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.


Assuntos
Centrossomo , Células-Tronco Embrionárias Murinas , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Centrossomo/metabolismo , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Células-Tronco Embrionárias Murinas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo
5.
Elife ; 112022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069759

RESUMO

The recent development of prime editing (PE) genome engineering technologies has the potential to significantly simplify the generation of human pluripotent stem cell (hPSC)-based disease models. PE is a multicomponent editing system that uses a Cas9-nickase fused to a reverse transcriptase (nCas9-RT) and an extended PE guide RNA (pegRNA). Once reverse transcribed, the pegRNA extension functions as a repair template to introduce precise designer mutations at the target site. Here, we systematically compared the editing efficiencies of PE to conventional gene editing methods in hPSCs. This analysis revealed that PE is overall more efficient and precise than homology-directed repair of site-specific nuclease-induced double-strand breaks. Specifically, PE is more effective in generating heterozygous editing events to create autosomal dominant disease-associated mutations. By stably integrating the nCas9-RT into hPSCs we achieved editing efficiencies equal to those reported for cancer cells, suggesting that the expression of the PE components, rather than cell-intrinsic features, limit PE in hPSCs. To improve the efficiency of PE in hPSCs, we optimized the delivery modalities for the PE components. Delivery of the nCas9-RT as mRNA combined with synthetically generated, chemically-modified pegRNAs and nicking guide RNAs improved editing efficiencies up to 13-fold compared with transfecting the PE components as plasmids or ribonucleoprotein particles. Finally, we demonstrated that this mRNA-based delivery approach can be used repeatedly to yield editing efficiencies exceeding 60% and to correct or introduce familial mutations causing Parkinson's disease in hPSCs.


From muscles to nerves, our body is formed of many kinds of cells which can each respond slightly differently to the same harmful genetic changes. Understanding the exact relationship between mutations and cell-type specific function is essential to better grasp how conditions such as Parkinson's disease or amyotrophic lateral sclerosis progress and can be treated. Stem cells could be an important tool in that effort, as they can be directed to mature into many cell types in the laboratory. Yet it remains difficult to precisely introduce disease-relevant mutations in these cells. To remove this obstacle, Li et al. focused on prime editing, a cutting-edge 'search and replace' approach which can introduce new genetic information into a specific DNA sequence. However, it was unclear whether this technique could be used to efficiently create stem cell models of human diseases. A first set of experiments showed that prime editing is superior to conventional approaches when generating mutated genes in stem cells. Li et al. then further improved the efficiency and precision of the method by tweaking how prime editing components are delivered into the cells. The refined approach could be harnessed to quickly generate large numbers of stem cells carrying mutations associated with Parkinson's disease; crucially, prime editing could then also be used to revert a mutated gene back to its healthy form. The improved prime editing approach developed by Li et al. removes a major hurdle for scientists hoping to use stem cells to study genetic diseases. This could potentially help to unlock progress in how we understand and ultimately treat these conditions.


Assuntos
Células-Tronco Pluripotentes , RNA Guia de Cinetoplastídeos , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Edição de Genes/métodos , Células-Tronco Pluripotentes/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , RNA Mensageiro/metabolismo , DNA Polimerase Dirigida por RNA , Ribonucleoproteínas/metabolismo , Sistemas CRISPR-Cas
6.
Essays Biochem ; 65(4): 709-721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34414426

RESUMO

Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from distal cis-regulatory elements (i.e. enhancers), which are stereotyped as short, rarely spliced and unstable. In fact, a non-negligible fraction of eRNAs seems to be longer, spliced and more stable, and their cognate enhancers are epigenomically and functionally distinguishable from typical enhancers. In this review, we first summarized the genomic and molecular origins underlying the observed heterogeneity among eRNAs. Then, we discussed how their heterogeneous properties (e.g. stability) affect the modes of interaction with their regulatory partners, from promiscuous cis-interactions to specific trans-interactions. Finally, we highlighted the existence of a seemingly continuous spectrum of eRNA properties and its implications in the genomic origins of non-coding RNA genes from an evolutionary perspective.


Assuntos
Elementos Facilitadores Genéticos , RNA , Elementos Facilitadores Genéticos/genética , RNA/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA