Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563576

RESUMO

An element, iron, a process, the generation of reactive oxygen species (ROS), and a molecule, ascorbate, were chosen in our study to show their dual functions and their role in cell fate decision. Iron is a critical component of numerous proteins involved in metabolism and detoxification. On the other hand, excessive amounts of free iron in the presence of oxygen can promote the production of potentially toxic ROS. They can result in persistent oxidative stress, which in turn can lead to damage and cell death. At the same time, ROS-at strictly regulated levels-are essential to maintaining the redox homeostasis, and they are engaged in many cellular signaling pathways, so their total elimination is not expedient. Ascorbate establishes a special link between ROS generation/elimination and cell death. At low concentrations, it behaves as an excellent antioxidant and has an important role in ROS elimination. However, at high concentrations, in the presence of transition metals such as iron, it drives the generation of ROS. In the term of the dual function of these molecules and oxidative stress, ascorbate/ROS-driven cell deaths are not necessarily harmful processes-they can be live-savers too.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/metabolismo , Ferro/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232313

RESUMO

Ferroptosis represents a typical process that has dual functions in cell fate decisions since the reduction and/or inhibition of ferroptosis is desirable for the therapies of diseases such as neurological disorders, localized ischemia-reperfusion, kidney injury, and hematological diseases, while the enhanced ferroptosis of cancer cells may benefit patients with cancer. The JNK pathway also has a real dual function in the fate of cells. Multiple factors suggest a potential link between the ferroptotic and JNK pathways; (i) both processes are ROS mediated; (ii) both can be inhibited by lipid peroxide scavengers; (iii) RAS mutations may play a role in the initiation of both pathways. We aimed to investigate the possible link between ferroptosis and the JNK pathway. Interestingly, JNK inhibitor co-treatment could enhance the cancer cytotoxic effect of the ferroptosis inducers in NRAS and KRAS mutation-harboring cells (HT-1080 and MIA PaCa-2). Since cancer's cytotoxic effect from the JNK inhibitors could only be suspended by the ferroptosis inhibitors, and that sole JNK-inhibitor treatment did not affect cell viability, it seems that the JNK inhibitors "just" amplify the effect of the ferroptosis inducers. This cancer cell death amplifying effect of the JNK inhibitors could not be observed in other oxidative stress-driven cell deaths. Hence, it seems it is specific to ferroptosis. Finally, our results suggest that GSH content/depletion could be an important candidate for switching the anti-cancer effect of JNK inhibitors.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Antineoplásicos/farmacologia , Humanos , Peróxidos Lipídicos , Sistema de Sinalização das MAP Quinases , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
FASEB J ; 33(2): 2372-2387, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277819

RESUMO

NF-E2-related factor 2 (NRF2) transcription factor has a fundamental role in cell homeostasis maintenance as one of the master regulators of oxidative and electrophilic stress responses. Previous studies have shown that a regulatory connection exists between NRF2 and autophagy during reactive oxygen species-generated oxidative stress. The aim of the present study was to investigate how autophagy is turned off during prolonged oxidative stress, to avoid overeating and destruction of essential cellular components. AMPK is a key cellular energy sensor highly conserved in eukaryotic organisms, and it has an essential role in autophagy activation at various stress events. Here the role of human AMPK and its Caenorhabditis elegans counterpart AAK-2 was explored upon oxidative stress. We investigated the regulatory connection between NRF2 and AMPK during oxidative stress induced by tert-butyl hydroperoxide (TBHP) in HEK293T cells and C. elegans. Putative conserved NRF2/protein skinhead-1 binding sites were found in AMPK/aak-2 genes by in silico analysis and were later confirmed experimentally by using EMSA. After addition of TBHP, NRF2 and AMPK showed a quick activation; AMPK was later down-regulated, however, while NRF2 level remained high. Autophagosome formation and Unc-51-like autophagy activating kinase 1 phosphorylation were initially stimulated, but they returned to basal values after 4 h of TBHP treatment. The silencing of NRF2 resulted in a constant activation of AMPK leading to hyperactivation of autophagy during oxidative stress. We observed the same effects in C. elegans demonstrating the conservation of this self-defense mechanism to save cells from hyperactivated autophagy upon prolonged oxidative stress. We conclude that NRF2 negatively regulates autophagy through delayed down-regulation of the expression of AMPK upon prolonged oxidative stress. This regulatory connection between NRF2 and AMPK may have an important role in understanding how autophagy is regulated in chronic human morbidities characterized by oxidative stress, such as neurodegenerative diseases, certain cancer types, and in metabolic diseases.-Kosztelnik, M., Kurucz, A., Papp, D., Jones, E., Sigmond, T., Barna, J., Traka, M. H., Lorincz, T., Szarka, A., Banhegyi, G., Vellai, T., Korcsmaros, T., Kapuy, O. Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Células HEK293 , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética
4.
Molecules ; 25(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231024

RESUMO

Cyclophosphamide is one of the most potent and reliable anti-cancer and immunosuppressive drugs. In our study, 33 individuals with different autoimmune diseases were treated with cyclophosphamide according to standard protocols. The responses to the treatments were determined by measuring the alteration of several typical parameters characterizing the given autoimmune diseases over time. We concluded that about 45% of the patients responded to the treatment. Patients were genotyped for polymorphisms of the CYP3A4, CYP2B6, GSTM1, GSTT1, and GSTP1 genes and disease remission cases were compared to the individual polymorphic genotypes. It was found that the GSTP1 I105V allelic variation significantly associated with the cyclophosphamide treatment-dependent disease-remissions. At the same time the GSH content of the erythrocytes in the patients with I105V allelic variation did not change. It appears that the individuals carrying the Ile105Val SNP in at least one copy had a significantly higher response rate to the treatment. Since this variant of GSTP1 can be characterized by lower conjugation capacity that results in an elongated and higher therapeutic dose of cyclophosphamide, our data suggest that the decreased activity of this variant of GSTP1 can be in the background of the more effective disease treatment.


Assuntos
Doenças Autoimunes/genética , Ciclofosfamida/farmacologia , Glutationa S-Transferase pi/genética , Imunossupressores/farmacologia , Variantes Farmacogenômicos , Polimorfismo Genético , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Biomarcadores , Ciclofosfamida/uso terapêutico , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Frequência do Gene , Glutationa/sangue , Glutationa/metabolismo , Humanos , Imunossupressores/uso terapêutico , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
5.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703252

RESUMO

Cellular homeostasis is controlled by an evolutionary conserved cellular digestive process called autophagy. This mechanism is tightly regulated by the two sensor elements called mTORC1 and AMPK. mTORC1 is one of the master regulators of proteostasis, while AMPK maintains cellular energy homeostasis. AMPK is able to promote autophagy by phosphorylating ULK1, the key inducer of autophagosome formation, while mTORC1 downregulates the self-eating process via ULK1 under nutrient rich conditions. We claim that the feedback loops of the AMPK-mTORC1-ULK1 regulatory triangle guarantee the appropriate response mechanism when nutrient and/or energy supply changes. In our opinion, there is an essential double negative feedback loop between mTORC1 and AMPK. Namely, not only does AMPK downregulate mTORC1, but mTORC1 also inhibits AMPK and this inhibition is required to keep AMPK inactive at physiological conditions. The aim of the present study was to explore the dynamical characteristic of AMPK regulation upon various cellular stress events. We approached our scientific analysis from a systems biology perspective by incorporating both theoretical and molecular biological techniques. In this study, we confirmed that AMPK is essential to promote autophagy, but is not sufficient to maintain it. AMPK activation is followed by ULK1 induction, where protein has a key role in keeping autophagy active. ULK1-controlled autophagy is always preceded by AMPK activation. With both ULK1 depletion and mTORC1 hyper-activation (i.e., TSC1/2 downregulation), we demonstrate that a double negative feedback loop between AMPK and mTORC1 is crucial for the proper dynamic features of the control network. Our computer simulations have further proved the dynamical characteristic of AMPK-mTORC1-ULK1 controlled cellular nutrient sensing.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Morte Celular Autofágica/fisiologia , Retroalimentação Fisiológica/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
6.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771288

RESUMO

Glucose is a basic nutrient in most of the creatures; its transport through biological membranes is an absolute requirement of life. This role is fulfilled by glucose transporters, mediating the transport of glucose by facilitated diffusion or by secondary active transport. GLUT (glucose transporter) or SLC2A (Solute carrier 2A) families represent the main glucose transporters in mammalian cells, originally described as plasma membrane transporters. Glucose transport through intracellular membranes has not been elucidated yet; however, glucose is formed in the lumen of various organelles. The glucose-6-phosphatase system catalyzing the last common step of gluconeogenesis and glycogenolysis generates glucose within the lumen of the endoplasmic reticulum. Posttranslational processing of the oligosaccharide moiety of glycoproteins also results in intraluminal glucose formation in the endoplasmic reticulum (ER) and Golgi. Autophagic degradation of polysaccharides, glycoproteins, and glycolipids leads to glucose accumulation in lysosomes. Despite the obvious necessity, the mechanism of glucose transport and the molecular nature of mediating proteins in the endomembranes have been hardly elucidated for the last few years. However, recent studies revealed the intracellular localization and functional features of some glucose transporters; the aim of the present paper was to summarize the collected knowledge.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Glucose-6-Fosfatase/metabolismo , Complexo de Golgi/metabolismo , Humanos
7.
Int J Mol Sci ; 18(8)2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829359

RESUMO

GLUT10 belongs to a family of transporters that catalyze the uptake of sugars/polyols by facilitated diffusion. Loss-of-function mutations in the SLC2A10 gene encoding GLUT10 are responsible for arterial tortuosity syndrome (ATS). Since subcellular distribution of the transporter is dubious, we aimed to clarify the localization of GLUT10. In silico GLUT10 localization prediction suggested its presence in the endoplasmic reticulum (ER). Immunoblotting showed the presence of GLUT10 protein in the microsomal, but not in mitochondrial fractions of human fibroblasts and liver tissue. An even cytosolic distribution with an intense perinuclear decoration of GLUT10 was demonstrated by immunofluorescence in human fibroblasts, whilst mitochondrial markers revealed a fully different decoration pattern. GLUT10 decoration was fully absent in fibroblasts from three ATS patients. Expression of exogenous, tagged GLUT10 in fibroblasts from an ATS patient revealed a strict co-localization with the ER marker protein disulfide isomerase (PDI). The results demonstrate that GLUT10 is present in the ER.


Assuntos
Artérias/anormalidades , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Instabilidade Articular/metabolismo , Dermatopatias Genéticas/metabolismo , Malformações Vasculares/metabolismo , Artérias/metabolismo , Imunofluorescência , Humanos , Espaço Intracelular/metabolismo , Instabilidade Articular/genética , Microssomos/metabolismo , Ligação Proteica , Transporte Proteico , Dermatopatias Genéticas/genética , Malformações Vasculares/genética
8.
Biochim Biophys Acta ; 1843(9): 1909-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907663

RESUMO

Beyond its general role as antioxidant, specific functions of ascorbate are compartmentalized within the eukaryotic cell. The list of organelle-specific functions of ascorbate has been recently expanded with the epigenetic role exerted as a cofactor for DNA and histone demethylases in the nucleus. Compartmentation necessitates the transport through intracellular membranes; members of the GLUT family and sodium-vitamin C cotransporters mediate the permeation of dehydroascorbic acid and ascorbate, respectively. Recent observations show that increased consumption and/or hindered entrance of ascorbate in/to a compartment results in pathological alterations partially resembling to scurvy, thus diseases of ascorbate compartmentation can exist. The review focuses on the reactions and transporters that can modulate ascorbate concentration and redox state in three compartments: endoplasmic reticulum, mitochondria and nucleus. By introducing the relevant experimental and clinical findings we make an attempt to coin the term of ascorbate compartmentation disease.


Assuntos
Ácido Ascórbico/metabolismo , Compartimento Celular , Doença , Animais , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Organelas/metabolismo
9.
J Theor Biol ; 365: 181-9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25451960

RESUMO

The huge demand of mitochondria as the quantitatively most important sources of ROS in the majority of heterotrophic cells for vitamin C is indisputable. The reduced form of the vitamin, l-ascorbic acid, is imported by an active mechanism requiring two sodium-dependent vitamin C transporters (SVCT1 and SVCT2). The oxidized form, dehydroascorbate is taken up by different members of the GLUT family. Because of the controversial experimental results the picture on mitochondrial vitamin C transport became quite obscure by the spring of 2014. Thus in silico prediction tools were applied in aid of the support of in vitro and in vivo results. The role of GLUT1 as a mitochondrial dehydroascorbate transporter could be reinforced by in silico predictions however the mitochondrial presence of GLUT10 is not likely since this transport protein got far the lowest mitochondrial localization scores. Furthermore the possible roles of GLUT9 and 11 in mitochondrial vitamin C transport can be proposed leastwise on the base of their computational localization analysis. In good concordance with the newest experimental observations on SVCT2 the mitochondrial presence of this transporter could also be supported by the computational prediction tools.


Assuntos
Ácido Ascórbico/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Animais , Transporte Biológico Ativo/fisiologia , Transportador de Glucose Tipo 1/metabolismo , Humanos , Transportadores de Sódio Acoplados à Vitamina C/metabolismo
10.
Orv Hetil ; 156(13): 503-9, 2015 Mar 29.
Artigo em Húngaro | MEDLINE | ID: mdl-25796277

RESUMO

ALR is a mystic protein. It has a so called "long" 22 kDa and a "short" 15 kDa forms. It has been described after partial hepatectomy and it has just been considered as a key protein of liver regeneration. At the beginning of the 21st century it has been revealed that the "long" form is localized in the mitochondrial intermembrane space and it is an element of the mitochondrial protein import and disulphide relay system. Several proteins of the substrates of the mitochondrial disulphide relay system are necessary for the proper function of the mitochondria, thus any mutation of the ALR gene leads to mitochondrial diseases. The "short" form of ALR functions as a secreted extracellular growth factor and it promotes the protection, regeneration and proliferation of hepatocytes. The results gained on the recently generated conditional ALR mutant mice suggest that ALR can play an important role in the pathogenesis of alcoholic and non-alcoholic steatosis. Since the serum level of ALR is modified in several liver diseases it can be a promising marker molecule in laboratory diagnostics.


Assuntos
Redutases do Citocromo/fisiologia , Hepatócitos/metabolismo , Regeneração Hepática , Mitocôndrias Hepáticas/metabolismo , Animais , Redutases do Citocromo/genética , Redutases do Citocromo/metabolismo , Hepatectomia , Humanos , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA