Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Vet Res ; 15(1): 473, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888628

RESUMO

BACKGROUND: Adenomyosis is a uterine dysfunction defined as the presence of endometrial glands within the myometrium. There is evidence that proangiogenic factors may play a role during the development of adenomyosis; however, exact mechanism remains unknown. The aim of the study was to determine the action of vascular endothelial growth factor A (VEGFA) in uterine tissue and uterine vascular endothelial cells during adenomyosis. RESULTS: Uterine tissues were collected and examined for the presence and extent of adenomyosis. Gene and protein expression of VEGFA and its two receptors (VEGFR1 and VEGFR2) was evaluated with quantitative polymerase chain reaction and Western blotting, respectively, in endometrium and myometrium during adenomyosis. Immunolocalization of VEGFA and its receptors within uterine tissues during adenomyosis was also determined. In an in vitro experiment, endothelial cells from non-adenomyotic bovine uteri were treated with media conditioned by non-adenomyotic or adenomyotic uterine slices treated with 17-beta-oestradiol (E2) or progesterone (P4). Both gene and protein expression of VEGFR2 were elevated in endometrium in stages 3-4 of adenomyosis. Protein expression of VEGFA and VEGFR2 as well as VEGFA secretion were increased in endothelial cells treated with media conditioned by adenomyotic uterine slices after E2 treatment. CONCLUSIONS: Results suggest that VEGFA signalling is an important component, next to E2, that enhances VEGFA action and participates in adenomyosis development in cows.


Assuntos
Adenomiose/veterinária , Estradiol/farmacologia , Progesterona/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bovinos , Células Cultivadas , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Células Endoteliais/metabolismo , Feminino , Expressão Gênica , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Útero/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
Reprod Biol Endocrinol ; 13: 110, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416515

RESUMO

BACKGROUND: Adenomyosis is a proliferative uterine dysfunction with unknown aetiology. One possible mechanism of its development involves disturbances in stem cell differentiation in uterine tissue. Previously, we identified pluripotent/multipotent cells in the bovine uterus, therefore our present study focused on determining expression of pluripotency markers, NANOG, OCT4 and SOX2, in bovine adenomyotic tissues and cells. FINDINGS: Immunolocalisation revealed protein expression of NANOG, OCT4 and SOX2 in both normal and adenomyotic uteri. mRNA expression for NANOG and OCT4 was increased in tissues obtained from uteri with adenomyosis compared to controls, but at the protein level there were no significant differences. mRNA expression for all three pluripotency markers was higher in myometrial cells isolated from uteri with adenomyotic lesions than in those isolated from normal uteri. The protein level of NANOG and SOX2 was decreased in stromal cells from adenomyotic tissues, whereas the level of OCT4 and SOX2 was increased in myometrial cells obtained from dysfunctional uteri. CONCLUSIONS: The results indicate significant changes in expression of pluripotency markers in adenomyotic compared to normal uteri, which suggest the involvement of uterine stem cells in adenomyosis.


Assuntos
Adenomiose/metabolismo , Proteínas de Homeodomínio/biossíntese , Fator 3 de Transcrição de Octâmero/biossíntese , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/biossíntese , Útero/metabolismo , Adenomiose/genética , Adenomiose/patologia , Animais , Biomarcadores/metabolismo , Bovinos , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/patologia , Fatores de Transcrição SOXB1/genética , Útero/patologia
3.
Nat Commun ; 15(1): 2715, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548742

RESUMO

Extracellular vesicles (EVs) are integral to numerous biological processes, yet it is unclear how environmental factors or interactions among individuals within a population affect EV-regulated systems. In Caenorhabditis elegans, the evolutionarily conserved large EVs, known as exophers, are part of a maternal somatic tissue resource management system. Consequently, the offspring of individuals exhibiting active exopher biogenesis (exophergenesis) develop faster. Our research focuses on unraveling the complex inter-tissue and social dynamics that govern exophergenesis. We found that ascr#10, the primary male pheromone, enhances exopher production in hermaphrodites, mediated by the G-protein-coupled receptor STR-173 in ASK sensory neurons. In contrast, pheromone produced by other hermaphrodites, ascr#3, diminishes exophergenesis within the population. This process is regulated via the neuropeptides FLP-8 and FLP-21, which originate from the URX and AQR/PQR/URX neurons, respectively. Our results reveal a regulatory network that controls the production of somatic EV by the nervous system in response to social signals.


Assuntos
Proteínas de Caenorhabditis elegans , Vesículas Extracelulares , Humanos , Animais , Masculino , Caenorhabditis elegans/genética , Feromônios , Proteínas de Caenorhabditis elegans/genética , Neurônios/fisiologia
4.
Animals (Basel) ; 10(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674333

RESUMO

The aim was to compare the blastocyst stages of red deer embryos in respect of in vitro fertilization (IVF) efficiency, morphology, apoptotic and proliferative abilities, and antioxidative potential according to the reproductive status of hinds. We used three experimental groups, including the ovaries collected post mortem on the 4th and 13th days of the estrous cycle and during pregnancy (n = 18). After oocyte maturation, frozen-thawed epididymal semen was used for IVF. Blastocyst quality, apoptotic potential by determining the mRNA expression of BAX, BCL-2, OCT4, SOX2, and placenta-specific 8 gene (PLAC8), and antioxidative potential of blastocysts were evaluated by determining the mRNA expression of CuSOD, MnSOD, and GPX as well as the enzymatic activity of superoxide dismutase and reduced glutathione. The highest development rate of expanded blastocyst, mRNA expression of BCL-2, OCT4, SOX2, and PLAC8 and mRNA expression and enzymatic activity of the antioxidative factors increased (p < 0.05) in blastocysts developed from the oocytes collected on the 4th day, compared to those developed from the oocytes collected on the 13th day of the cycle and during pregnancy. Our study indicates that the 4th day of the estrous cycle is the most effective period for oocyte collection for IVF and embryo development in hinds, considering quality parameters and antioxidative potential of the blastocysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA