Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(5): 133, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185787

RESUMO

The pharmacological activation of the GPR39 receptor has been proposed as a novel strategy for treating seizures; however, this hypothesis has not been verified experimentally. TC-G 1008 is a small molecule agonist increasingly used to study GPR39 receptor function but has not been validated using gene knockout. Our aim was to assess whether TC-G 1008 produces anti-seizure/anti-epileptogenic effects in vivo and whether the effects are mediated by GPR39. To obtain this goal we utilized various animal models of seizures/epileptogenesis and GPR39 knockout mice model. Generally, TC-G 1008 exacerbated behavioral seizures. Furthermore, it increased the mean duration of local field potential recordings in response to pentylenetetrazole (PTZ) in zebrafish larvae. It facilitated the development of epileptogenesis in the PTZ-induced kindling model of epilepsy in mice. We demonstrated that TC-G 1008 aggravated PTZ-epileptogenesis by selectively acting at GPR39. However, a concomitant analysis of the downstream effects on the cyclic-AMP-response element binding protein in the hippocampus of GPR39 knockout mice suggested that the molecule also acts via other targets. Our data argue against GPR39 activation being a viable therapeutic strategy for treating epilepsy and suggest investigating whether TC-G 1008 is a selective agonist of the GPR39 receptor.


Assuntos
Epilepsia , Pentilenotetrazol , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/genética , Epilepsia/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Pentilenotetrazol/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra/metabolismo
2.
Bioorg Chem ; 141: 106903, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827015

RESUMO

The serotonin 1A (5-HT1A) receptors and serotonin transporter (SERT) are important biological targets in the treatment of diseases of the central nervous system, especially for depression. In this study, new 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives linked with the 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole moiety were synthesised and evaluated for their affinity for 5-HT1A receptor and serotonin reuptake inhibition. Selected compounds were then tested for their affinity for D2, 5-HT2A, 5-HT6 and 5-HT7 receptors, and also in in vitro metabolic stability assays in human microsomes. Finally, in vivo assays allowed us to evaluate the agonist-antagonist properties of pre- and postsynaptic 5-HT1A receptors. 3-(1-(4-(3-(5-methoxy-1H-indol-3-yl)-2,5-dioxopyrrolidin-1-yl)butyl)-1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-5-carbonitrile (4f) emerged as the most promising compound from the series, due to its favourable receptor binding profile (Ki(5-HT1A) = 10.0 nM; Ki(SERT) = 2.8 nM), good microsomal stability and 5-HT1A receptor agonistic activity.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Indóis/química , Agonistas do Receptor de Serotonina/farmacologia , Relação Estrutura-Atividade
3.
Clin Exp Pharmacol Physiol ; 50(8): 621-633, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37194348

RESUMO

Mephedrone is a representative of synthetic cathinones that is known from its rewarding and psychostimulant effects. It exerts behavioural sensitization after repeated and then interrupted administration. In our study, we investigated a role of the L-arginine-NO-cGMP-dependent signalling in the expression of sensitization to hyperlocomotion evoked by mephedrone. The study was carried out in male albino Swiss mice. The tested mice received mephedrone (2.5 mg/kg) for 5 consecutive days and on the 20th day of the experiment (the 'challenge' day) animals received both mephedrone (2.5 mg/kg) and a given substance that affects the L-arginine-NO-cGMP signalling, that is, L-arginine hydrochloride (125 or 250 mg/kg), 7-nitroindazole (10 or 20 mg/kg), L-NAME (25 or 50 mg/kg) or methylene blue (5 or 10 mg/kg). We observed that 7-nitroindazole, L-NAME and methylene blue inhibited the expression of sensitization to the mephedrone-induced hyperlocomotion. Moreover, we demonstrated that the mephedrone-induced sensitization is accompanied by lowered levels of D1 receptors and NR2B subunits in the hippocampus, whereas a concurrent administration of L-arginine hydrochloride, 7-nitroindazole and L-NAME with the mephedrone challenge dose reversed these effects. Methylene blue only reversed the mephedrone-induced effects on hippocampal levels of the NR2B subunit. Our study confirms that the L-arginine-NO-cGMP pathway contributes to mechanisms underlying the expression of sensitization to the mephedrone-evoked hyperlocomotion.


Assuntos
Azul de Metileno , Óxido Nítrico , Camundongos , Masculino , Animais , NG-Nitroarginina Metil Éster/farmacologia , Azul de Metileno/farmacologia , Óxido Nítrico/metabolismo , Arginina/farmacologia , Locomoção , GMP Cíclico/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762458

RESUMO

The study aimed to evaluate the antidepressant-like effects of an imipramine-zinc (IMI-Zn) complex compound on mice and assess the level of oxidative stress parameters. The research also investigated whether the IMI-Zn complex showed superior antidepressant activity compared to individual treatments of both compounds at effective doses and their joint administration at subtherapeutic doses. The study was conducted on mice. Forced swim (FST), tail suspension (TST), and locomotor activity tests were used for behavioral studies. The results demonstrated the IMI-Zn complex's dose-dependent antidepressant potential when orally administered to mice. Its efficacy was similar to the separate administration of therapeutic doses of imipramine (IMI) and zinc (Zn) and their joint administration at subtherapeutic doses. Moreover, subjecting mice to acute stress did not significantly affect the activity of on glutathione peroxidase (GPX), glutathione reductase (GR), and total antioxidant status (TAS), possibly due to the short exposure time to the stress stimulus. By developing the IMI-Zn complex, it might be possible to simplify the treatment approach, potentially improving patient compliance by combining the therapeutic effects of both IMI and Zn within a single compound, thus addressing one of the contributing factors to non-compliance in depression therapy. The IMI-Zn complex could be a valuable strategy to optimize therapeutic outcomes and balance efficacy and tolerability.

5.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884712

RESUMO

Three new compounds, namely [HL]2+[CuCl4]2-, [HL]2+[ZnCl4]2-, and [HL]2+[CdCl4]2- (where L: imipramine) were synthesized and their physicochemical and biological properties were thoroughly investigated. All three compounds form isostructural, crystalline systems, which have been studied using Single-Crystal X-ray diffraction analysis (SC-XRD) and Fourier-transform infrared spectroscopy (FTIR). The thermal stability was investigated using thermogravimetric analysis (TGA) and melting points for all compounds have been determined. Magnetic measurements were performed in order to study the magnetic properties of the compounds. The above mentioned techniques allowed us to comprehensively examine the physicochemical properties of the newly obtained compounds. The biological activity was investigated using the number of Zebrafish tests, as it is one of the most common models for studying the impact of newly synthesized compounds on the central nervous system (CNS), since this model is very similar to the human CNS.


Assuntos
Cádmio/química , Complexos de Coordenação/farmacologia , Cobre/química , Embrião não Mamífero/citologia , Peixe-Zebra/crescimento & desenvolvimento , Zinco/química , Animais , Elétrons , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento
6.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652672

RESUMO

Two series of novel 4-aryl-2H-pyrido[1,2-c]pyrimidine (6a-i) and 4-aryl-5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine (7a-i) derivatives were synthesized. The chemical structures of the new compounds were confirmed by 1H and 13C NMR spectroscopy and ESI-HRMS spectrometry. The affinities of all compounds for the 5-HT1A receptor and serotonin transporter protein (SERT) were determined by in vitro radioligand binding assays. The test compounds demonstrated very high binding affinities for the 5-HT1A receptor of all derivatives in the series (6a-i and 7a-i) and generally low binding affinities for the SERT protein, with the exception of compounds 6a and 7g. Extended affinity tests for the receptors D2, 5-HT2A, 5-HT6 and 5-HT7 were conducted with regard to selected compounds (6a, 7g, 6d and 7i). All four compounds demonstrated very high affinities for the D2 and 5-HT2A receptors. Compounds 6a and 7g also had high affinities for 5-HT7, while 6d and 7i held moderate affinities for this receptor. Compounds 6a and 7g were also tested in vivo to identify their functional activity profiles with regard to the 5-HT1A receptor, with 6a demonstrating the activity profile of a presynaptic agonist. Metabolic stability tests were also conducted for 6a and 6d.


Assuntos
Piridinas , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Animais , Células CHO , Cricetulus , Humanos , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
7.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673282

RESUMO

The purpose of the study was to investigate whether the co-administration of Mg2+ and Zn2+ with selective A1 and A2A receptor antagonists might be an interesting antidepressant strategy. Forced swim, tail suspension, and spontaneous locomotor motility tests in mice were performed. Further, biochemical and molecular studies were conducted. The obtained results indicate the interaction of DPCPX and istradefylline with Mg2+ and Zn2+ manifested in an antidepressant-like effect. The reduction of the BDNF serum level after co-administration of DPCPX and istradefylline with Mg2+ and Zn2+ was noted. Additionally, Mg2+ or Zn2+, both alone and in combination with DPCPX or istradefylline, causes changes in Adora1 expression, DPCPX or istradefylline co-administered with Zn2+ increases Slc6a15 expression as compared to a single-drug treatment, co-administration of tested agents does not have a more favourable effect on Comt expression. Moreover, the changes obtained in Ogg1, MsrA, Nrf2 expression show that DPCPX-Mg2+, DPCPX-Zn2+, istradefylline-Mg2+ and istradefylline-Zn2+ co-treatment may have greater antioxidant capacity benefits than administration of DPCPX and istradefylline alone. It seems plausible that a combination of selective A1 as well as an A2A receptor antagonist and magnesium or zinc may be a new antidepressant therapeutic strategy.


Assuntos
Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Comportamento Animal/efeitos dos fármacos , Magnésio/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Xantinas/farmacologia , Zinco/farmacologia , Animais , Masculino , Camundongos
8.
Molecules ; 27(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011254

RESUMO

Chronic stress is the key factor contributing to the development of depressive symptoms. Chronic restraint stress (CRS) is well validated and is one of the most commonly used models to induce depressive-like behavior in rodents. The present study aimed to evaluate whether fluoxetine (FLU 5 mg/kg) and zinc (Zn 10mg/kg) given simultaneously induce a more pronounced antidepressant-like effect in the CRS model than both those compounds given alone. Behavioral assessment was performed using the tail suspension and splash tests (TST and ST, respectively). Furthermore, the effects of CRS, FLU and Zn given alone and combined treatment with FLU + Zn on the expression of proteins involved in the apoptotic, inflammatory, and epigenetic processes were evaluated in selected brain structures (prefrontal cortex, PFC; and hippocampus, Hp) using Western blot analysis or enzyme-linked immunosorbent assays (ELISA). The results obtained indicated that three hours (per day) of immobilization for 4 weeks induced prominent depressive symptoms that manifested as increased immobility time in the TST, as well as decreased number and grooming time in the ST. Behavioral changes induced by CRS were reversed by both FLU (5 and 10 mg/kg) or Zn (10 mg/kg). Zinc supplementation (10 mg/kg) slightly increases the effectiveness of FLU (5 mg/kg) in the TST. However, it significantly increased the activity of FLU in the ST compared to the effect induced by FLU and Zn alone. Biochemical studies revealed that neither CRS nor FLU and Zn given alone or in combined treatment alter the expression of proteins involved in apoptotic or inflammatory processes. CRS induced major alterations in histone deacetylase (HDAC) levels by increasing the level of HADC1 and decreasing the level of HADC4 in the PFC and Hp, decreasing the level of HADC6 in the PFC but increasing it in Hp. Interestingly, FLU + Zn treatment reversed CRS-induced changes in HDAC levels in the Hp, indicating that HDAC modulation is linked to FLU + Zn treatment and this effect is structure-specific.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Fluoxetina/farmacologia , Histona Desacetilases/metabolismo , Zinco/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Elevação dos Membros Posteriores , Humanos , Masculino , Camundongos Endogâmicos C57BL , Piroptose , Estresse Psicológico/metabolismo
9.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361754

RESUMO

A series of N-skatyltryptamines was synthesized and their affinities for serotonin and dopamine receptors were determined. Compounds exhibited activity toward 5-HT1A, 5-HT2A, 5-HT6, and D2 receptors. Substitution patterns resulting in affinity/activity switches were identified and studied using homology modeling. Chosen hits were screened to determine their metabolism, permeability, hepatotoxicity, and CYP inhibition. Several D2 receptor antagonists with additional 5-HT6R antagonist and agonist properties were identified. The former combination resembled known antipsychotic agents, while the latter was particularly interesting due to the fact that it has not been studied before. Selective 5-HT6R antagonists have been shown previously to produce procognitive and promnesic effects in several rodent models. Administration of 5-HT6R agonists was more ambiguous-in naive animals, it did not alter memory or produce slight amnesic effects, while in rodent models of memory impairment, they ameliorated the condition just like antagonists. Using the identified hit compounds 15 and 18, we tried to sort out the difference between ligands exhibiting the D2R antagonist function combined with 5-HT6R agonism, and mixed D2/5-HT6R antagonists in murine models of psychosis.


Assuntos
Antipsicóticos/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Indóis/farmacologia , Nootrópicos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Triptaminas/farmacologia , Animais , Antipsicóticos/síntese química , Família 2 do Citocromo P450/metabolismo , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/síntese química , Células Hep G2 , Humanos , Indóis/síntese química , Ligantes , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Nootrópicos/síntese química , Ligação Proteica , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/fisiopatologia , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Relação Estrutura-Atividade , Triptaminas/síntese química
10.
Int J Mol Sci ; 21(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640759

RESUMO

Clinical and preclinical studies indicate that zinc (Zn) is an essential factor in the development and treatment of major depressive disorder (MDD). Conventional monoamine-based antidepressants mobilize zinc in the blood and brain of depressed patients as well as rodents. N-methyl-D-aspartate acid receptor (NMDAR) antagonists exhibit antidepressant-like activity. However, not much is known about the antidepressant efficacy of NMDAR antagonists in zinc-deficient (ZnD) animals. We evaluated the antidepressant-like activity of two NMDAR antagonists (ketamine; global NMDAR antagonist and Ro 25-6981 (Ro); selective antagonist of the GluN2B NMDAR subunit) in ZnD rats using the forced swim test (FST) and sucrose intake test (SIT). A single dose of either Ro 25-6981 or ketamine normalized depressive-like behaviors in ZnD rats; however, Ro was effective in both tests, while ketamine was only effective in the FST. Additionally, we investigated the mechanism of antidepressant action of Ro at the molecular (analysis of protein expression by Western blotting) and anatomical (density of dendritic spines by Golgi Cox-staining) levels. ZnD rats exhibited decreased phosphorylation of the p70S6K protein, and enhanced density of dendritic spines in the prefrontal cortex (PFC) compared to control rats. The antidepressant-like activity of Ro was associated with the increased phosphorylation of p70S6K and ERK in the PFC. In summary, single doses of the NMDAR antagonists ketamine and Ro exhibited antidepressant-like activity in the ZnD animal model of depression. Animals were only deprived of Zn for 4 weeks and the biochemical effects of Zn deprivation and Ro were investigated in the PFC and hippocampus. The shorter duration of dietary Zn restriction may be a limitation of the study. However, future studies with longer durations of dietary Zn restriction, as well as the investigation of multiple brain structures, are encouraged as a supplement to this study.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Transtorno Depressivo Maior/tratamento farmacológico , Dieta/efeitos adversos , Ketamina/farmacologia , Fenóis/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Zinco/deficiência , Analgésicos/farmacologia , Animais , Comportamento Animal , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/psicologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Metab Brain Dis ; 32(1): 97-103, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27502410

RESUMO

Despite many clinical trials assessing the role of zinc in major depressive disorder (MDD), the conclusions still remain ambiguous. The aim of the present clinical study was to determine and comparison the zinc concentration in the blood of MDD patients (active stage or remission) and healthy volunteers (controls), as well as to discuss its potential clinical usefulness as a biomarker of the disease. In this study 69 patients with current depressive episode, 45 patients in remission and 50 controls were enrolled. The zinc concentration was measured by electrothermal atomic absorption spectrometry (ET AAS). The obtained results revealed, that the zinc concentration in depressed phase were statistically lower than in the healthy volunteers [0.89 vs. 1.06 mg/L, respectively], while the zinc level in patients achieve remission was not significantly different from the controls [1.07 vs. 1.06 mg/L, respectively]. Additionally, among the patients achieve remission a significant differences in zinc concentration between group with and without presence of drug-resistance in the previous episode of depression were observed. Also, patients in remission demonstrated correlation between zinc level and the average number of depressive episodes in the last year. Serum zinc concentration was not dependent on atypical features of depression, presence of psychotic symptoms or melancholic syndrome, age, age of onset or duration of disease, number of episodes in the life time, duration of the episode/remission and severity of depression measured by the Hamilton Rating Scale for Depression (HDRS), and the Montgomery-Asberg Depression Rating Scale (MADRS). Concluding, our findings confirm the correlation between zinc deficit present in the depressive episode, and are consistent with the majority of previous studies. These results may also indicate that serum zinc concentration might be considered as a potential biological marker of MDD.


Assuntos
Transtorno Depressivo Maior/diagnóstico , Zinco/sangue , Adulto , Biomarcadores/sangue , Transtorno Depressivo Maior/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Índice de Gravidade de Doença
12.
Neuropsychobiology ; 73(2): 116-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023678

RESUMO

BACKGROUND: Lowered antioxidant defense systems and increased oxidative stress are implicated in bipolar disorders (BD). Early and late stages of BD may present different biological features (including the level of oxidative stress) and may therefore require different treatment strategies. The aim of this study was to analyze serum levels of lipid peroxidation [measured as thiobarbituric acid-reactive substances (TBARS), a derivative of malondialdehyde] in BD patients at various stages and phases of the illness and compare their TBARS levels with those of healthy controls. METHOD: A total of 129 patients (58 in the depressive episode, 23 in the manic episode and 48 in remission) diagnosed with type I (n = 69) or type II (n = 60) BD and 50 healthy volunteers (control group) were enrolled in the study. The level of lipid peroxidation was measured in blood serum using a TBARS assay kit. RESULTS: TBARS levels in the acute episode of mania/hypomania and depression (but not in remission) were significantly higher than in healthy controls. With regard to the BD stage, both early- and late-stage BD TBARS levels were significantly increased in patients in the depressive episode. In late-stage BD, the TBARS level in patients in remission remained elevated compared with controls. A multiple regression model confirmed the association between the TBARS level and BD stage or acute BD. CONCLUSION: Our findings indicate that TBARS levels reflect the oxidative stress state which increases both in the acute phase of BD (mania/hypomania and depression) and with BD progression (stage).


Assuntos
Transtorno Bipolar/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Doença Aguda , Adulto , Análise de Variância , Transtorno Bipolar/tratamento farmacológico , Análise Química do Sangue , Doença Crônica , Progressão da Doença , Feminino , Humanos , Peroxidação de Lipídeos/fisiologia , Masculino , Escalas de Graduação Psiquiátrica , Análise de Regressão
13.
Neural Plast ; 2015: 591563, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106488

RESUMO

The results from numerous studies have shown that an imbalance between particular neurotransmitters may lead to brain circuit dysfunction and development of many pathological states. The significance of glutamate pathways for the functioning of the nervous system is equivocal. On the one hand, glutamate transmission is necessary for neuroplasticity, synaptogenesis, or cell survival, but on the other hand an excessive and long-lasting increased level of glutamate in the synapse may lead to cell death. Under clinical conditions, hyperactivity of the glutamate system is associated with ischemia, epilepsy, and neurodegenerative diseases such as Alzheimer's, Huntington's, and many others. The achievement of glutamate activity in the physiological range requires efficient control by endogenous regulatory factors. Due to the fact that the free pool of ion Zn(2+) is a cotransmitter in some glutamate neurons; the role of this element in the pathophysiology of a neurodegenerative diseases has been intensively studied. There is a lot of evidence for Zn(2+) dyshomeostasis and glutamate system abnormalities in ischemic and neurodegenerative disorders. However, the precise interaction between Zn(2+) regulative function and the glutamate system is still not fully understood. This review describes the relationship between Zn(2+) and glutamate dependent signaling pathways under selected pathological central nervous system (CNS) conditions.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de Glutamato/metabolismo , Zinco/metabolismo , Animais , Morte Celular , Glutamatos/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Transmissão Sináptica
14.
J Biol Inorg Chem ; 19(7): 1069-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24748223

RESUMO

From many points of view, zinc is one of the most important trace elements in biological systems. Many articles describe the well-known role of this metal in human physiology and pathophysiology, but in the related literature, there is a lack of current and reliable reviews of the role of zinc deficiency in many diseases. In this article, we describe the role of zinc deficiency in the oxidative stress control, immune response, proliferation, and pathogenesis and pathophysiology of selected diseases such as depression, cardiovascular diseases, diabetes mellitus, Alzheimer's disease, and Wilson's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doenças Cardiovasculares/metabolismo , Transtorno Depressivo/metabolismo , Diabetes Mellitus/metabolismo , Degeneração Hepatolenticular/metabolismo , Nefropatias/metabolismo , Zinco/deficiência , Doença de Alzheimer/etiologia , Animais , Encéfalo/metabolismo , Doenças Cardiovasculares/etiologia , Transtorno Depressivo/etiologia , Diabetes Mellitus/etiologia , Degeneração Hepatolenticular/etiologia , Homeostase , Humanos , Nefropatias/etiologia , Estresse Oxidativo , Zinco/análise , Zinco/metabolismo
15.
Int J Neuropsychopharmacol ; 17(3): 393-405, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24067405

RESUMO

Recent data suggests that the glutamatergic system is involved in the pathophysiology and treatment of major depressive disorder (MDD) and that the N-methyl-D-aspartate (NMDA) receptor is a potential target for antidepressant drugs. The magnesium ion blocks the ion channel of the NMDA receptor and prevents its excessive activation. Some preclinical and clinical evidence suggests also that magnesium may be useful in the treatment of depression. The present study investigated the effect of magnesium treatment (10, 15 and 20 mg/kg, given as magnesium hydroaspartate) in the chronic mild stress (CMS) model of depression in rats. Moreover, the effect of CMS and magnesium (with an effective dose) on the level of the proteins related to the glutamatergic system (GluN1, GluN2A, GluN2B and PSD-95) in the hippocampus, prefrontal cortex (PFC) and amygdala were examined. A significant reduction in the sucrose intake induced by CMS was increased by magnesium treatment at a dose of 15 mg/kg, beginning from the third week of administration. Magnesium did not affect this behavioural parameter in the control animals. CMS significantly increased the level of the GluN1 subunit in the amygdala (by 174%) and GluN2A in the hippocampus (by 191%), both of which were significantly attenuated by magnesium treatment. Moreover, magnesium treatment in CMS animals increased the level of GluN2B (by 116%) and PSD-95 (by 150%) in the PFC. The present results for the first time demonstrate the antidepressant-like activity of magnesium in the animal model of anhedonia (CMS), thus indicating the possible involvement of the NMDA/glutamatergic receptors in this activity.


Assuntos
Antidepressivos/uso terapêutico , Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Magnésio/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/patologia , Análise de Variância , Animais , Antidepressivos/sangue , Antidepressivos/farmacologia , Encéfalo/metabolismo , Doença Crônica , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Magnésio/sangue , Magnésio/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar , Estresse Psicológico/sangue , Estresse Psicológico/tratamento farmacológico
16.
Int J Neuropsychopharmacol ; 17(11): 1763-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946016

RESUMO

The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas Repressoras/metabolismo , Estresse Psicológico/patologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Proteínas Nucleares/genética , Bulbo Olfatório/cirurgia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/genética , Proteínas Repressoras/genética , Fatores Sexuais , Estresse Psicológico/etiologia , Fatores de Transcrição
17.
Pharmacol Rep ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980569

RESUMO

BACKGROUND: The understanding of mechanisms underlying non-response to antidepressants is limited. The latest data highlights the role of insulin resistance (IR) in major depressive disorder (MDD) pathophysiology, presentation, and treatment efficacy. This work aimed to assess IR in MDD and explore the relationships between IR, MDD presentation and non-response to selective serotonin and noradrenaline reuptake inhibitors (SNRI). METHODS: 67 MDD individuals: 36 responsive (MDD T[+]), 31 non-responsive (MDD T[-]) to SNRI and 30 healthy controls were recruited. The treatment response criteria were: Clinical Global Impression Scale-Improvement score of 1 or 2 after ≥ 8 weeks of treatment. Participants were assessed by physician and self-report tools measuring depression, anhedonia, anxiety, bipolarity, sleep quality. Blood samples were collected to assess fasting glucose and insulin levels and calculate HOMA-IR (homeostasis model assessment of insulin resistance). RESULTS: MDD T[-] vs. MDD T[+] had significantly higher body mass index, insulin levels, and HOMA-IR. MDD T[-] presented higher levels of depressed mood, appetite/weight changes, loss of interest, energy, overall depressive symptoms, and sleep impairment; some evaluations suggested higher anhedonia and anxiety in MDD T[-] vs. MDD T[+]. Insulin and IR were weakly but significantly correlated with the severity of psychomotor symptoms, energy level, thoughts of death/suicide, self-criticism, appetite/weight, depressed mood symptoms, sleep problems. IR was weakly but significantly correlated with anhedonia. CONCLUSION: IR appears to be linked to depressive symptoms characteristic of the "metabolic" MDD subtype, such as psychomotor changes, energy level, anhedonia, sleep problems, appetite/weight changes, state and trait anxiety, sleep quality, and non-response to SNRI.

18.
Brain Sci ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371334

RESUMO

In most cases, psychotic episodes occur in the course of chronic mental illnesses, e [...].

19.
Pharmacol Rep ; 75(6): 1341-1349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932583

RESUMO

The desire to find a gold-standard therapy for depression is still ongoing. Developing one universal and effective pharmacotherapy remains troublesome due to the high complexity and variety of symptoms. Over the last decades, the understanding of the mechanism of pathophysiology of depression and its key consequences for brain functioning have undergone significant changes, referring to the monoaminergic theory of the disease. After the breakthrough discovery of ketamine, research began to focus on the modulation of glutamatergic transmission as a new pharmacological target. Glutamate is a crucial player in mechanisms of a novel class of antidepressants, including hallucinogens such as ketamine. The role of glutamatergic transmission is also suggested in the antidepressant (AD) action of scopolamine and psilocybin. Despite fast, robust, and sustained AD action hallucinogens belonging to a group of rapid-acting antidepressants (RAA) exert significant undesired effects, which hamper their use in the clinic. Thus, the synergistic action of more than one substance in lower doses instead of monotherapy may alleviate the likelihood of adverse effects while improving therapeutic outcomes. In this review, we explore AD-like behavioral, synaptic, and molecular action of RAAs such as ketamine, scopolamine, and psilocybin, in combination with mGlu2/3 receptor antagonists.


Assuntos
Alucinógenos , Ketamina , Receptores de Glutamato Metabotrópico , Ketamina/farmacologia , Ketamina/uso terapêutico , Alucinógenos/farmacologia , Psilocibina , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Escopolamina/farmacologia
20.
Behav Brain Res ; 437: 114103, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36089098

RESUMO

Mephedrone, a popular psychostimulating substance widely used illegally in recreational purposes, exerts in rodents that regularly and intermittently were exposed to it a sensitized response to the drug. Behavioral sensitization is one of experimental models of drug dependency/abuse liability. In the present study we evaluated a potential involvement of the L-arginine-NO-cGMP pathway in the development of sensitization to the mephedrone-induced hyperlocomotion. Locomotor activity was measured automatically and experiments were performed on male Albino Swiss mice. We demonstrated that a 5-day administration of 7-nitroindazole (10 or 20 mg/kg/day) and L-NAME (50 mg/kg/day) suppressed the development of sensitization to the mephedrone-induced hyperlocomotion. As for L-arginine (125 or 250 mg/kg/day) and methylene blue (5 or 10 mg/kg/day) the obtained outcomes are inconclusive. Furthermore, the lower dose of L-NAME (25 mg/kg/day) surprisingly potentiated the development of sensitization to the mephedrone-induced effects on the spontaneous locomotor activity in mice. In conclusion, our data demonstrated that modulators of the L-arginine-NO-cGMP pathway may differently affect the development of sensitization to the locomotor stimulant effects of mephedrone. Inhibition of neuronal nitric oxide synthase (NOS) seems to prevent this process quite profoundly, non-selective inhibition of NOS may have a dual effect, whereas inhibition of soluble guanylate cyclase may only partially suppress the development of sensitization to the mephedrone-induced effects.


Assuntos
GMP Cíclico , Óxido Nítrico , Animais , Camundongos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , GMP Cíclico/metabolismo , Arginina/farmacologia , Arginina/metabolismo , Locomoção , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA