Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Imaging ; 24(1): 107, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734629

RESUMO

This study addresses the critical challenge of detecting brain tumors using MRI images, a pivotal task in medical diagnostics that demands high accuracy and interpretability. While deep learning has shown remarkable success in medical image analysis, there remains a substantial need for models that are not only accurate but also interpretable to healthcare professionals. The existing methodologies, predominantly deep learning-based, often act as black boxes, providing little insight into their decision-making process. This research introduces an integrated approach using ResNet50, a deep learning model, combined with Gradient-weighted Class Activation Mapping (Grad-CAM) to offer a transparent and explainable framework for brain tumor detection. We employed a dataset of MRI images, enhanced through data augmentation, to train and validate our model. The results demonstrate a significant improvement in model performance, with a testing accuracy of 98.52% and precision-recall metrics exceeding 98%, showcasing the model's effectiveness in distinguishing tumor presence. The application of Grad-CAM provides insightful visual explanations, illustrating the model's focus areas in making predictions. This fusion of high accuracy and explainability holds profound implications for medical diagnostics, offering a pathway towards more reliable and interpretable brain tumor detection tools.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos
2.
BMC Med Imaging ; 24(1): 201, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095688

RESUMO

Skin cancer stands as one of the foremost challenges in oncology, with its early detection being crucial for successful treatment outcomes. Traditional diagnostic methods depend on dermatologist expertise, creating a need for more reliable, automated tools. This study explores deep learning, particularly Convolutional Neural Networks (CNNs), to enhance the accuracy and efficiency of skin cancer diagnosis. Leveraging the HAM10000 dataset, a comprehensive collection of dermatoscopic images encompassing a diverse range of skin lesions, this study introduces a sophisticated CNN model tailored for the nuanced task of skin lesion classification. The model's architecture is intricately designed with multiple convolutional, pooling, and dense layers, aimed at capturing the complex visual features of skin lesions. To address the challenge of class imbalance within the dataset, an innovative data augmentation strategy is employed, ensuring a balanced representation of each lesion category during training. Furthermore, this study introduces a CNN model with optimized layer configuration and data augmentation, significantly boosting diagnostic precision in skin cancer detection. The model's learning process is optimized using the Adam optimizer, with parameters fine-tuned over 50 epochs and a batch size of 128 to enhance the model's ability to discern subtle patterns in the image data. A Model Checkpoint callback ensures the preservation of the best model iteration for future use. The proposed model demonstrates an accuracy of 97.78% with a notable precision of 97.9%, recall of 97.9%, and an F2 score of 97.8%, underscoring its potential as a robust tool in the early detection and classification of skin cancer, thereby supporting clinical decision-making and contributing to improved patient outcomes in dermatology.


Assuntos
Aprendizado Profundo , Dermoscopia , Redes Neurais de Computação , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Dermoscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos
3.
BMC Med Imaging ; 24(1): 110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750436

RESUMO

Brain tumor classification using MRI images is a crucial yet challenging task in medical imaging. Accurate diagnosis is vital for effective treatment planning but is often hindered by the complex nature of tumor morphology and variations in imaging. Traditional methodologies primarily rely on manual interpretation of MRI images, supplemented by conventional machine learning techniques. These approaches often lack the robustness and scalability needed for precise and automated tumor classification. The major limitations include a high degree of manual intervention, potential for human error, limited ability to handle large datasets, and lack of generalizability to diverse tumor types and imaging conditions.To address these challenges, we propose a federated learning-based deep learning model that leverages the power of Convolutional Neural Networks (CNN) for automated and accurate brain tumor classification. This innovative approach not only emphasizes the use of a modified VGG16 architecture optimized for brain MRI images but also highlights the significance of federated learning and transfer learning in the medical imaging domain. Federated learning enables decentralized model training across multiple clients without compromising data privacy, addressing the critical need for confidentiality in medical data handling. This model architecture benefits from the transfer learning technique by utilizing a pre-trained CNN, which significantly enhances its ability to classify brain tumors accurately by leveraging knowledge gained from vast and diverse datasets.Our model is trained on a diverse dataset combining figshare, SARTAJ, and Br35H datasets, employing a federated learning approach for decentralized, privacy-preserving model training. The adoption of transfer learning further bolsters the model's performance, making it adept at handling the intricate variations in MRI images associated with different types of brain tumors. The model demonstrates high precision (0.99 for glioma, 0.95 for meningioma, 1.00 for no tumor, and 0.98 for pituitary), recall, and F1-scores in classification, outperforming existing methods. The overall accuracy stands at 98%, showcasing the model's efficacy in classifying various tumor types accurately, thus highlighting the transformative potential of federated learning and transfer learning in enhancing brain tumor classification using MRI images.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Interpretação de Imagem Assistida por Computador/métodos
4.
BMC Med Inform Decis Mak ; 24(1): 281, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354496

RESUMO

Polycystic Ovarian Disease or Polycystic Ovary Syndrome (PCOS) is becoming increasingly communal among women, owing to poor lifestyle choices. According to the research conducted by National Institutes of Health, it has been observe that PCOS, an endocrine condition common in women of childbearing age, has become a significant contributing factor to infertility. Ovarian abnormalities brought on by PCOS carry a high risk of miscarriage, infertility, cardiac problems, diabetes, uterine cancer, etc. Ovarian cysts, obesity, menstrual irregularities, elevated amounts of male hormones, acne vulgaris, hair loss, and hirsutism are some of the symptoms of PCOS. It is not easy to determine PCOS because of its different combinations of symptoms in different women and various criteria needed for diagnosis. Taking biochemical tests and ovary scanning is a time-consuming process and the financial expenses have become a hardship to the patients. Thus, early prognosis of PCOS is crucial to avoid infertility. The goal of the proposed work is to analyse PCOS symptoms based on clinical data for early diagnosis and to classify into PCOS affected or not. To achieve this objective, clinical features dataset and ultrasound imaging dataset from Kaggle is utilized. Initially 541 instances of 45 clinical features such as testosterone, hirsutism, family history, BMI, fast food, menstrual disorder, risk etc. are considered and correlation-based feature extraction method is applied to this dataset which results in 17 features. The extracted features are applied to various machine learning algorithms such as Logistic Regression, Naïve Bayes and Support Vector Machine. The performance of each method is evaluated based on accuracy, precision, recall, F1-score and the result shows that among three models, Support Vector Machine model achieved high accuracy of 94.44%. In addition to this, 3856 ultrasound images are analysed by CNN based deep learning algorithm and VGG16 transfer learning algorithm. The performance of these models is evaluated using training accuracy, loss and validation accuracy, loss and the result depicts that VGG16 outperforms than CNN model with validation accuracy of 98.29%.


Assuntos
Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/diagnóstico , Feminino , Prognóstico , Inteligência Artificial , Adulto , Ultrassonografia
6.
J Neurosci Methods ; 410: 110227, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038716

RESUMO

BACKGROUND: Accurately diagnosing brain tumors from MRI scans is crucial for effective treatment planning. While traditional methods heavily rely on radiologist expertise, the integration of AI, particularly Convolutional Neural Networks (CNNs), has shown promise in improving accuracy. However, the lack of transparency in AI decision-making processes presents a challenge for clinical adoption. METHODS: Recent advancements in deep learning, particularly the utilization of CNNs, have facilitated the development of models for medical image analysis. In this study, we employed the EfficientNetB0 architecture and integrated explainable AI techniques to enhance both accuracy and interpretability. Grad-CAM visualization was utilized to highlight significant areas in MRI scans influencing classification decisions. RESULTS: Our model achieved a classification accuracy of 98.72 % across four categories of brain tumors (Glioma, Meningioma, No Tumor, Pituitary), with precision and recall exceeding 97 % for all categories. The incorporation of explainable AI techniques was validated through visual inspection of Grad-CAM heatmaps, which aligned well with established diagnostic markers in MRI scans. CONCLUSION: The AI-enhanced EfficientNetB0 framework with explainable AI techniques significantly improves brain tumor classification accuracy to 98.72 %, offering clear visual insights into the decision-making process. This method enhances diagnostic reliability and trust, demonstrating substantial potential for clinical adoption in medical diagnostics.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Meningioma/diagnóstico por imagem , Glioma/diagnóstico por imagem , Neuroimagem/métodos , Neuroimagem/normas , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
7.
PLoS One ; 18(3): e0282904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36921014

RESUMO

In today's society, time is considered more valuable than money, and researchers often have limited time to find relevant papers for their research. Identifying and accessing essential information can be a challenge in this situation. To address this, the personalized suggestion system has been developed, which uses a user's behavior data to suggest relevant items. The collaborative filtering strategy has been used to provide a user with the top research articles based on their queries and similarities with other users' questions, thus saving time by avoiding time-consuming searches. However, when rating data is abundant but sparse, the usual method of determining user similarity is relatively straightforward. Furthermore, it fails to account for changes in users' interests over time resulting in poor performance. This research proposes a new similarity measure approach that takes both user confidence and time context into account to increase user similarity computation. The experimental results show that the proposed technique works well with sparse data, and improves accuracy by 16.2% compared to existing models, especially during prediction. Furthermore, it enhances the quality of recommendations.


Assuntos
Algoritmos , Processos Mentais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA