Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(16): 6537-42, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21464322

RESUMO

Gene-corrected patient-specific induced pluripotent stem (iPS) cells offer a unique approach to gene therapy. Here, we begin to assess whether the mutational load acquired during gene correction of iPS cells is compatible with use in the treatment of genetic causes of retinal degenerative disease. We isolated iPS cells free of transgene sequences from a patient with gyrate atrophy caused by a point mutation in the gene encoding ornithine-δ-aminotransferase (OAT) and used homologous recombination to correct the genetic defect. Cytogenetic analysis, array comparative genomic hybridization (aCGH), and exome sequencing were performed to assess the genomic integrity of an iPS cell line after three sequential clonal events: initial reprogramming, gene targeting, and subsequent removal of a selection cassette. No abnormalities were detected after standard G-band metaphase analysis. However, aCGH and exome sequencing identified two deletions, one amplification, and nine mutations in protein coding regions in the initial iPS cell clone. Except for the targeted correction of the single nucleotide in the OAT locus and a single synonymous base-pair change, no additional mutations or copy number variation were identified in iPS cells after the two subsequent clonal events. These findings confirm that iPS cells themselves may carry a significant mutational load at initial isolation, but that the clonal events and prolonged cultured required for correction of a genetic defect can be accomplished without a substantial increase in mutational burden.


Assuntos
Atrofia Girata/enzimologia , Atrofia Girata/genética , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Células-Tronco Pluripotentes/enzimologia , Células Cultivadas , Marcação de Genes/métodos , Estudo de Associação Genômica Ampla , Instabilidade Genômica/genética , Atrofia Girata/patologia , Atrofia Girata/terapia , Humanos , Células-Tronco Pluripotentes/patologia , Recombinação Genética
2.
Stem Cell Reports ; 19(8): 1217-1232, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38964325

RESUMO

Culture-acquired variants in human pluripotent stem cells (hPSCs) hinder their applications in research and clinic. However, the mechanisms that underpin selection of variants remain unclear. Here, through analysis of comprehensive karyotyping datasets from over 23,000 hPSC cultures of more than 1,500 lines, we explored how culture conditions shape variant selection. Strikingly, we identified an association of chromosome 1q gains with feeder-free cultures and noted a rise in its prevalence in recent years, coinciding with increased usage of feeder-free regimens. Competition experiments of multiple isogenic lines with and without a chromosome 1q gain confirmed that 1q variants have an advantage in feeder-free (E8/vitronectin), but not feeder-based, culture. Mechanistically, we show that overexpression of MDM4, located on chromosome 1q, drives variants' advantage in E8/vitronectin by alleviating genome damage-induced apoptosis, which is lower in feeder-based conditions. Our study explains condition-dependent patterns of hPSC aberrations and offers insights into the mechanisms of variant selection.


Assuntos
Cromossomos Humanos Par 1 , Células-Tronco Pluripotentes , Humanos , Cromossomos Humanos Par 1/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Técnicas de Cultura de Células/métodos , Apoptose/genética , Células Alimentadoras/citologia , Linhagem Celular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA