Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Eur Biophys J ; 49(6): 449-462, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32681183

RESUMO

The structural study of small heme-containing proteins, such as myoglobin, in the apo-form lacking heme has been extensively described, but the characterization and stability of the giant Glossoscolex paulistus hemoglobin (HbGp), in the absence of heme groups, has not been studied. Spectroscopic data show efficient extraction of the heme groups from the hemoglobin, with relatively small secondary and tertiary structural changes in apo-HbGp noticed compared to oxy-HbGp. Electrophoresis shows a partial precipitation of the trimer abc (significantly lower intensity of the corresponding band in the gel), due to extraction of heme groups, and the predominance of the intense monomeric d band, as well as of two linker bands. AUC and DLS data agree with SDS-PAGE in showing that the apo-HbGp undergoes dissociation into the d and abc subunits. Subunits d and abc are characterized by sedimentation coefficients and percentage contributions of 2.0 and 3.0 S and 76 and 24%, respectively. DLS data suggest that the apo-HbGp is unstable, and two populations are present in solution: one with a diameter around 6.0 nm, identified with the dissociated species, and a second one with diameter 100-180 nm, due to aggregated protein. Finally, the presence of urea promotes the exposure of the fluorescent probes, extrinsic ANS and intrinsic protein tryptophans to the aqueous solvent due to the unfolding process. An understanding of the effect of heme extraction on the stability of hemoproteins is important for biotechnological approaches such as the introduction of non-native prosthetic groups and development of artificial enzymes with designed properties.


Assuntos
Apoproteínas/química , Apoproteínas/metabolismo , Espaço Extracelular/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Oligoquetos , Ureia/farmacologia , Animais , Estabilidade Proteica/efeitos dos fármacos
2.
Biopolymers ; 105(4): 199-211, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26574155

RESUMO

In this work, isothermal titration and differential scanning calorimetric methods, in combination with pyrene fluorescence emission and dynamic light scattering have been used to investigate the interaction of dodecyltrimethylammonium bromide (DTAB) with the giant extracellular Glossoscolex paulistus hemoglobin (HbGp) in the oxy-form, at pH values around the isoelectric point (pI ≈ 5.5). Our ITC results have shown that the interaction of DTAB with the hemoglobin is more intense at pH 7.0, with a smaller cac (critical aggregation concentration) value. The increase of protein concentration does not influence the cac value of the interaction, at both pH values. Therefore, the beginning of the DTAB-oxy-HbGp premicellar aggregates formation, in the cac region, is not affected by the increase of protein concentration. HSDSC studies show higher Tm values at pH 5.0, in the absence and presence of DTAB, when compared with pH 7.0. Furthermore, at pH 7.0, an aggregation process is observed with DTAB in the range from 0.75 to 1.5 mmol/L, noticed by the exothermic peak, and similar to that observed for pure oxy-HbGp, at pH 5.0, and in the presence of DTAB. DLS melting curves show a decrease on the hemoglobin thermal stability for the oxy-HbGp-DTAB mixtures and formation of larger aggregates, at pH 7.0. Our present data, together with previous results, support the observation that the protein structural changes, at pH 7.0, occur at smaller DTAB concentrations, as compared with pH 5.0, due to the acidic pI of protein that favors the oxy-HbGp-cationic surfactant interaction at neutral pH.


Assuntos
Brometos/química , Ponto Isoelétrico , Oxiemoglobinas/química , Compostos de Amônio Quaternário/química , Animais , Varredura Diferencial de Calorimetria , Cátions , Oligoquetos
3.
Eur Biophys J ; 45(6): 549-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27017354

RESUMO

Oxy-HbRa thermal stability was evaluated by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) at pH 5.0, 7.0, 8.0, and 9.0. DLS results show that oxy-HbRa, at pH 7.0 and 5.0, remains stable up to 56 °C, undergoing denaturation/aggregation in acidic media above 60 °C, followed by partial sedimentation of aggregates. At alkaline pH values 8.0 and 9.0, oxy-HbRa oligomeric dissociation is observed above 30 °C, before denaturation. SAXS data show that oxy-HbRa, at 20 °C, is in its native form, displaying radius of gyration (R g) and particle maximum dimension (D max) of 108 ± 1 and 300 ± 10 Å, respectively. Oxy-HbRa, at pH 7.0, undergoes denaturation/aggregation at 60 °C. At pH 5.0-6.0, HbRa thermal denaturation/aggregation start earlier, at 50 °C, accompanied by an increase of R g and D max values. However, an overlap of oligomeric dissociation and denaturation in the system is observed upon temperature increase, with an increase in R g and D max. Analysis of experimental p(r) curves as a linear combination of theoretical curves obtained for HbGp fragments from the crystal structure shows an increasing contribution of dodecamer (abcd)3 and tetramer (abcd) in solution, as a function of pH values (8.0 and 9.0) and temperature. Finally, our data show, for the first time, that oxy-HbRa, in neutral and acidic media, does not undergo oligomeric dissociation before denaturation, while in alkaline media the oligomeric dissociation process is an important step in the thermal denaturation.


Assuntos
Difusão Dinâmica da Luz , Espaço Extracelular , Hemoglobinas/química , Oligoquetos/citologia , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X , Animais , Concentração de Íons de Hidrogênio , Oxiemoglobinas/química , Desnaturação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína
4.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1257-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057666

RESUMO

The sequences of all seven polypeptide chains from the giant haemoglobin of the free-living earthworm Glossoscolex paulistus (HbGp) are reported together with the three-dimensional structure of the 3.6 MDa complex which they form. The refinement of the full particle, which has been solved at 3.2 Å resolution, the highest resolution reported to date for a hexagonal bilayer haemoglobin composed of 12 protomers, is reported. This has allowed a more detailed description of the contacts between subunits which are essential for particle stability. Interpretation of features in the electron-density maps suggests the presence of metal-binding sites (probably Zn(2+) and Ca(2+)) and glycosylation sites, some of which have not been reported previously. The former appear to be important for the integrity of the particle. The crystal structure of the isolated d chain (d-HbGp) at 2.1 Å resolution shows different interchain contacts between d monomers compared with those observed in the full particle. Instead of forming trimers, as seen in the complex, the isolated d chains associate to form dimers across a crystallographic twofold axis. These observations eliminate the possibility that trimers form spontaneously in solution as intermediates during the formation of the dodecameric globin cap and contribute to understanding of the possible ways in which the particle self-assembles.


Assuntos
Hemoglobinas/química , Oligoquetos/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
5.
Biochim Biophys Acta ; 1828(11): 2419-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23792068

RESUMO

rBPI21 belongs to the antimicrobial peptide and protein (AMP) family. It has high affinity for lipopolysaccharide (LPS), acting mainly against Gram-negative bacteria. This work intends to elucidate the mechanism of action of rBPI21 at the membrane level. Using isothermal titration calorimetry, we observed that rBPI21 interaction occurs only with negatively charged membranes (mimicking bacterial membranes) and is entropically driven. Differential scanning calorimetry shows that membrane interaction with rBPI21 is followed by an increase of rigidity on negatively charged membrane, which is corroborated by small angle X-ray scattering (SAXS). Additionally, SAXS data reveal that rBPI21 promotes the multilamellarization of negatively charged membranes. The results support the proposed model for rBPI21 action: first it may interact with LPS at the bacterial surface. This entropic interaction could cause the release of ions that maintain the packed structure of LPS, ensuring peptide penetration. Then, rBPI21 may interact with the negatively charged leaflets of the outer and inner membranes, promoting the interaction between the two bacterial membranes, ultimately leading to cell death.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/efeitos dos fármacos , Proteínas Recombinantes/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Calorimetria , Bactérias Gram-Negativas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas Recombinantes/farmacologia , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Biopolymers ; 101(10): 1065-76, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24839186

RESUMO

Annelid erythrocruorins are respiratory proteins with high cooperativity and low autoxidation rates. The giant extracellular hemoglobin of the earthworm, Glossoscolex paulistus (HbGp), has a molecular mass of 3.6 MDa. In this work, isothermal titration calorimetry (ITC), together with DLS and fluorescence emission have been used to investigate the interaction of SDS with the HbGp in the oxy-form, at pH 7.0. Our ITC and DLS results show that addition of SDS induces oxy-HbGp oligomeric dissociation, while a small amount of protein aggregation is observed only by DLS. Moreover, the oligomeric dissociation process is favored at lower protein concentrations. The temperature effect does not influence significantly the interaction of SDS with the hemoglobin, due to the similarities presented by the critical aggregation concentration (cac) and critical micelle concentration (cmc') for the mixtures. The increase of oxy-HbGp concentration leads to a slight variation of the cac values for the SDS-oxy-HbGp mixture, attributed mainly to the noncooperative electrostatic binding of surfactant to protein. However, the cmc' values increase considerably, associated to a more cooperative hydrophobic binding. Complementary pyrene fluorescence emission studies show formation of pre-micellar structures of the mixture already at lower SDS concentrations. This study opens the possibility of the evaluation of the surfactant effect on the hemoglobin stability by ITC, which is made for the first time with this extracellular hemoglobin.


Assuntos
Espaço Extracelular/química , Hemoglobinas/metabolismo , Oligoquetos/química , Multimerização Proteica , Dodecilsulfato de Sódio/metabolismo , Animais , Calorimetria , Difusão Dinâmica da Luz , Hidrodinâmica , Pirenos/química , Espectrometria de Fluorescência , Tensoativos/química , Temperatura , Titulometria
7.
Eur Biophys J ; 42(4): 267-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23233118

RESUMO

Our aim was to investigate the interaction of the cationic meso-tetrakis (4-N-methylpyridyl) porphyrin, a photosensitizer used for photodynamic therapy, in its free base form (TMPyP) and complexed with Zn(II) (ZnTMPyP), with large unilamellar vesicles (LUVs), as a model for the gram-negative bacterial cell wall. Mixtures of the zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) phospholipids, at different molar percentages, were used as LUVs. A significant increase of porphyrin affinity at higher POPG molar concentrations was observed from the binding constant values, K b, estimated by optical absorption and steady-state fluorescence. Besides, as demonstrated by time-resolved fluorescence, this affinity increase is also followed by a higher fraction of vesicle-bound porphyrin in the LUVs. Moreover, based on the K b values, we have observed a higher affinity of the ZnTMPyP to the POPG containing LUVs as compared to the TMPyP. Steady-state fluorescence quenching and zeta potential studies revealed that both porphyrins are possibly located at the LUVs Stern layer region. Therefore, the electrostatic attraction between the positively charged porphyrin peripheral groups and the negatively charged outer surface of the LUVs plays an important role in porphyrin association and localization. Our results have improved the understanding of the successful application of cationic porphyrins on the photo-inactivation of gram-negative bacteria. Since a higher accumulation of the ZnTMPyP in the bacterial cell wall would be expected, this porphyrin could be a more efficient therapeutic drug for this treatment.


Assuntos
Metaloporfirinas/metabolismo , Fosfolipídeos/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Lipossomas Unilamelares/metabolismo , Absorção , Espectrometria de Fluorescência
8.
Arch Biochem Biophys ; 519(1): 46-58, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22286030

RESUMO

The stability of the Glossoscolex paulistus hemoglobin (HbGp), in two iron oxidation states (and three forms), as monitored by optical absorption, fluorescence emission and circular dichroism (CD) spectroscopies, in the presence of the chaotropic agent urea, is studied. HbGp oligomeric dissociation, denaturation and iron oxidation are observed. CD data show that the cyanomet-HbGp is more stable than the oxy-form. Oxy- and cyanomet-HbGp show good fits on the basis of a two state model with critical urea concentrations at 220-222 nm of 5.1±0.2 and 6.1±0.1 mol/L, respectively. The three-state model was able to reveal a subtle second transition at lower urea concentration (1.0-2.0 mol/L) associated to partial oligomeric dissociation. The intermediate state for oxy- and cyanomet-HbGp is very similar to the native state. For met-HbGp, a different equilibrium, in the presence of urea, is observed. A sharp transition at 1.95±0.05 mol/L of denaturant is observed, associated to oligomeric dissociation and hemichrome formation. In this case, analysis by a three-state model reveals the great similarity between the intermediate and the unfolded states. Analysis of spectroscopic data, by two-state and three-state models, reveals consistency of obtained thermodynamic parameters for HbGp urea denaturation.


Assuntos
Hemoglobinas/química , Ferro/química , Oligoquetos/metabolismo , Ureia/química , Animais , Dicroísmo Circular , Hemoglobinas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Oxirredução , Desnaturação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
9.
Langmuir ; 26(12): 9794-801, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20423061

RESUMO

The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 MDa. It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole pH range. Our zeta-potential data are consistent with light scattering results. Average values of pI obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at pH 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5.0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.


Assuntos
Hemoglobinas/química , Multimerização Proteica , Tensoativos/química , Animais , Substitutos Sanguíneos/química , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Oligoquetos , Estabilidade Proteica , Proteínas/química
10.
Anal Biochem ; 385(2): 257-63, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19059373

RESUMO

The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by subunits containing heme groups with molecular masses (M) in the range of 15 to 19 kDa, monomers of 16 kDa (d), and trimers of 51 to 52 kDa (abc) linked by nonheme structures named linkers of 24 to 32 kDa (L). HbGp is homologous to Lumbricus terrestris hemoglobin (HbLt). Several reports propose M of HbLt in the range of 3.6 to 4.4 MDa. Based on subunits M determined by mass spectrometry and assuming HbGp stoichiometry of 12(abcd)(3)L(3) (Vinogradov model) plus 144 heme groups, a value of M for HbGp oligomer of 3560 kDa can be predicted. This value is nearly 500 kDa higher than the unique HbGp M value reported in the literature. In the current work, sedimentation velocity analytical ultracentrifugation (AUC) experiments were performed to obtain M for HbGp in oxy and cyano-met forms. s(0)(20,w) values of 58.1+/-0.2S and 59.6+/-0.2S, respectively, for the two oxidation forms were obtained. The ratio between sedimentation and diffusion coefficients supplied values for M of approximately 3600+/-100 and 3700+/-100 kDa for oxy and cyano-met HbGp forms, respectively. An independent determination of the partial specific volume, V(bar), for HbGp was performed based on density measurements, providing a value of 0.764+/-0.008, in excellent agreement with the estimates from SEDFIT software. Our results show total consistency between M obtained by AUC and recent partial characterization by mass spectrometry. Therefore, HbGp possesses M very close to that of HbLt, suggesting an oligomeric assembly in agreement with the Vinogradov model.


Assuntos
Hemoglobinas/análise , Hemoglobinas/química , Oligoquetos/química , Animais , Espectrometria de Massas , Peso Molecular , Estrutura Quaternária de Proteína , Ultracentrifugação
11.
Int J Biol Macromol ; 133: 30-36, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30986471

RESUMO

Glossoscolex paulistus hemoglobin structure is composed of 144 globin chains and 36 polypeptide chains lacking the heme group, with a total molecular mass of 3600 kDa. The current study focuses on the oxy-HbGp oligomeric stability, as a function of the storage time, at pH 7.0, using dynamic light scattering, analytical ultracentrifugation (AUC), optical absorption and size exclusion chromatography (SEC). HbGp stored in Tris-HCl buffer, pH 7.0, at 4 °C, for two years remains in the native form, while 4-6 years HbGp stocks present typical hemichrome species absorption spectra. AUC and SEC analyses show that the contribution of HbGp-subunits, such as, dodecamer (abcd)3, tetramer abcd, trimer abc and monomer d, increases with the protein aging due to the lower stability of the HbGp with the time. The dissociation and the oxidation of the iron noted for the older protein solutions indicate that HbGp storage for periods of time longer than two years changes its ability to carry oxygen. Despite the reduction of HbGp stability and oxygen carrying capacity with aging, the protein stability is still larger as compared to mammalian hemoglobins. Thus, the extracellular hemoglobins are quite stable and resistant to the auto-oxidation process, making them of interest for biotechnological applications.


Assuntos
Hemoglobinas/química , Oligoquetos , Multimerização Proteica , Animais , Modelos Moleculares , Fenômenos Ópticos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Fatores de Tempo
12.
Biophys J ; 94(6): 2228-40, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18065453

RESUMO

The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 x 10(6) Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (D(h)) of 27 +/- 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller D(h) of 10 +/- 1 nm. The decrease in D(h) suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DLS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25 degrees C and 38 degrees C. At 25 degrees C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38 degrees C is faster than that at 25 degrees C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25 degrees C. Autoxidation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.


Assuntos
Cnidários/metabolismo , Hemoglobinas/química , Espectrofotometria/métodos , Animais , Biofísica/métodos , Substitutos Sanguíneos/química , Cromatografia em Gel , Heme/química , Concentração de Íons de Hidrogênio , Cinética , Luz , Óptica e Fotônica , Oxigênio/metabolismo , Espalhamento de Radiação , Temperatura
13.
Biochim Biophys Acta ; 1770(4): 506-17, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17196340

RESUMO

The effects of two ionic surfactants on the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form have been studied through the use of several spectroscopic techniques such as electronic optical absorption, fluorescence emission, light scattering, and circular dichroism. The use of anionic sodium dodecyl sulphate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. At pH 7.0, both surfactants induce the protein dissociation and a significant oxidation. Spectral changes occur at very low CTAC concentrations suggesting a significant electrostatic contribution to the protein-surfactant interaction. At low protein concentration, 0.08 mg/ml, some light scattering within a narrow CTAC concentration range occurs due to protein-surfactant precipitation. Light scattering experiments showed the dissociation of the oligomeric structure by SDS and CTAC, and the effect of precipitation induced by CTAC. At higher protein concentrations, 3.0 mg/ml, a precipitation was observed due to the intense charge neutralization upon formation of ion pair in the protein-surfactant precipitate. The spectral changes are spread over a much wider SDS concentration range, implying a smaller electrostatic contribution to the protein-surfactant interactions. The observed effects are consistent with the acid isoelectric point (pI) of this class of hemoglobins, which favors the intense interaction of HbGp with the cationic surfactant due to the existence of excess acid anionic residues at the protein surface. Protein secondary structure changes are significant for CTAC at low concentrations while they occur at significantly higher concentrations for SDS. In summary, the cationic surfactant seems to interact more strongly with the protein producing more dramatic spectral changes as compared to the anionic one. This is opposite as observed for several other hemoproteins. The surfactants at low concentrations produce the oligomeric dissociation, which facilitates the iron oxidation, an important factor modulating further oligomeric protein dissociation.


Assuntos
Compostos de Cetrimônio/química , Hemoglobinas/química , Oligoquetos/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Animais , Cetrimônio , Precipitação Química , Cromatografia em Gel , Dicroísmo Circular , Espaço Extracelular/química , Hemoglobinas/isolamento & purificação , Concentração de Íons de Hidrogênio , Luz , Oxirredução , Conformação Proteica , Desnaturação Proteica , Espalhamento de Radiação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
14.
J Phys Chem B ; 112(14): 4261-9, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18345659

RESUMO

Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 A(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.


Assuntos
Antipsicóticos/química , Clorpromazina/química , Fenotiazinas/química , Trifluoperazina/química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
15.
Colloids Surf B Biointerfaces ; 61(2): 153-63, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17825537

RESUMO

The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1mM while at pH 9.0 the surfactant effect is more intense above 1mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship.


Assuntos
Anelídeos/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Tensoativos/metabolismo , Algoritmos , Animais , Cromatografia em Gel , Dicroísmo Circular , Estrutura Quaternária de Proteína , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
16.
Colloids Surf B Biointerfaces ; 65(2): 247-56, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18539441

RESUMO

Fluorescence quenching of meso-tetrakis-4-sulfonatophenyl (TPPS(4)) and meso-tetrakis-4-N-methylpyridil (TMPyP) porphyrins is studied in aqueous solution and upon addition of micelles of sodium dodecylsulfate (SDS), cetyltrimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and t-octylphenoxypolyethoxyethanol (Triton X-100). Potassium iodide (KI) was used as quencher. Steady-state Stern-Volmer plots were best fitted by a quadratic equation, including dynamic (K(D)) and static (K(S)) quenching. K(S) was significantly smaller than K(D). Frequency-domain fluorescence lifetimes allowed estimating bimolecular quenching constants, k(q). At 25 degrees C, in aqueous solution, TMPyP shows k(q) values a factor of 2-3 higher than the diffusional limit. TPPS(4) shows collisional quenching with pH dependent k(q) values. For TMPyP quenching results are consistent with reported binding constants: a significant reduction of quenching takes place for SDS, a moderate reduction is observed for HPS and almost no change is seen for Triton X-100. Similar data were obtained at 50 degrees C. For CTAC-TPPS(4) system an enhancement of quenching was observed as compared to pure buffer. This is probably associated to accumulation of iodide at the cationic micellar interface. The attraction between CTAC headgroups and I(-), and repulsion between SDS and I(-), enhances and reduces the fluorescence quenching, respectively, of porphyrins located at the micellar interface. The small quenching of TPPS(4) in Triton X-100 is consistent with strong binding as reported in the literature.


Assuntos
Micelas , Porfirinas/química , Fluorescência , Solubilidade , Água/química
17.
Int J Biol Macromol ; 42(2): 111-9, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17996934

RESUMO

The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by approximately 144 subunits containing heme groups with molecular masses in the range of 16-19kDa forming a monomer (d) and a trimer (abc), and around 36 non-heme structures, named linkers (L). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS) analysis was performed recently, to obtain directly information on the molecular masses of the different subunits from HbGp in the oxy-form. This technique demonstrated structural similarity between HbGp and the widely studied hemoglobin of Lumbricus terrestris (HbLt). Indeed, two major isoforms (d(1) and d(2)) of identical proportions with masses of 16,355+/-25 and 16,428+/-24Da, respectively, and two minor isoforms (d(3) and d(4)) with masses around 16.6kDa were detected for monomer d of HbGp. In the present work, the effects of anionic sodium dodecyl sulfate (SDS) and cationic cethyltrimethylammonium chloride (CTAC) on the oligomeric structure of HbGp have been studied by MALDI-TOF-MS in order to evaluate the interaction between ionic surfactants and HbGp. The data obtained with this technique show an effective interaction of cationic surfactant CTAC with the two isoforms of monomer d, d(1) and d(2), both in the whole protein as well as in the pure isolated monomer. The results show that up to 10 molecules of CTAC are bound to each isoform of the monomer. Differently, the mass spectra obtained for SDS-HbGp system showed that the addition of the anionic surfactant SDS does not originate any mass increment of the monomeric subunits, indicating that SDS-HbGp interaction is, probably, significantly less effective as compared to CTAC-HbGp one. The acid pI of the protein around 5.5 is, probably, responsible for this behavior. The results of this work suggest also some interaction of both surfactants with linker chains as well as with trimers, as judged from observed mass increments. Our data are consistent with a recent spectroscopic study showing a strong interaction between CTAC and HbGp at physiological pH [P.S.Santiago, et al, Biochim. Biophys. Acta 1770 (2007) 506-517.].


Assuntos
Hemoglobinas/química , Oligoquetos/química , Tensoativos/química , Animais , Íons/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Int J Biol Macromol ; 111: 271-280, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29305213

RESUMO

The giant extracellular hemoglobin from earthworm Glossoscolex paulistus (HbGp) reacts with hydrogen peroxide, displaying peroxidase activity in the presence of guaiacol. The formation of ferryl-HbGp (compound II) from the peroxidase cycle was studied in the present work. The hypervalent ferryl-HbGp species was formed directly by the reaction of oxy-HbGp and hydrogen peroxide. The oxy-HbGp heme groups (144) under different excess of H2O2, relative to heme, showed an influence in the total amount of ferryl-HbGp at the end of the reaction. The ferryl-HbGp was formed with second order rate constant of 27.1±0.5M-1s-1, at pH7.0 and 25°C. The increase of the pH value to 8.0 induces both faster formation and decay of ferryl-HbGp, together with oligomeric dissociation induced by the presence of H2O2, as observed by DLS. This effect of dissociation increases the heme exposure and decreases the ferryl-HbGp stability, affecting the rate constant as a parallel reaction. At pH7.0, high excess of H2O2, above 1:5 oxy-HbGp heme: H2O2, produces the aggregation of the protein. Our results show for the first time, for an extracellular giant hemoglobin, the possible effects of oxidative stress induced by hydrogen peroxide.


Assuntos
Heme/química , Hemoglobinas/química , Peróxido de Hidrogênio/química , Animais , Hidrodinâmica , Concentração de Íons de Hidrogênio , Cinética , Luz , Peso Molecular , Oligoquetos/química , Espalhamento de Radiação , Temperatura
19.
Biochim Biophys Acta ; 1760(2): 216-26, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16310957

RESUMO

Enzymatic oxidation of dipyridamole (DIP) by horseradish peroxidase-hydrogen peroxide system (HRP-H2O2) in aqueous and micellar solutions was carried out. The reaction was monitored by optical absorption and fluorescence techniques. In aqueous solution at pH 7.0 and pH 9.0, the disappearance of the characteristic bands of DIP centered at 400 nm and 280 nm was observed. A new strong band at 260 nm is observed for the oxidation product(s) with shoulders at 322 nm and 390 nm. A non-fluorescent product is formed upon oxidation. In cationic cethyl trimethyl-1-ammonium chloride (CTAC) and zwitterionic 3-(N-hexadecyl-N,N-dimethylammonium) propane sulfonate (HPS) micellar solutions the same results are observed: three, well-defined, isosbestic points in the optical spectra suggest the transformation between two species. In anionic micellar sodium dodecylsulfate solution (SDS), the appearance of a new band centered around 506 nm was observed, associated to a solution color change from the usual yellow to deep blue/violet, characteristic of a radical species associated to the one-electron oxidation of DIP to its cation radical (DIP*+), observed previously in electrochemical oxidation. Experiments of radical decay kinetics monitoring the absorbance change at 506 nm were performed and analyzed in the frame of a kinetic model taking into account the species both in homogeneous and micellar media. The reaction medium is composed of bulk solution, SDS micelle/solution interface and enzyme catalytic site(s). The variation of DIP*+ concentration was analyzed assuming: (1) synthesis of DIP*+ by HRP through one-electron oxidation; (2) decomposition of DIP*+ by further one-electron oxidation; (3) direct two-electron oxidation of DIP by HRP; (4) bimolecular DIP*+ disproportionation. The main results of the analysis are as follows: (1) kinetic data can be divided in two phases, an HRP active phase and another phase which proceeds in the absence of enzyme activity due to consumption of all H2O2; (2) the reactions of DIP*+ formation, DIP*+ decomposition and DIP two-electron oxidation are HRP concentration dependent; (3) since DIP*+ formation constant seems to be overestimated, it is proposed that two-electron oxidation is another source of DIP*+, through the comproportionation reaction. Evidences for this reaction were also observed previously in electrochemical experiments; and (4) the kinetic analysis provides evidences that the bimolecular reaction of DIP*+ takes place mainly in the absence of active HRP and in this phase the combination of, at least, two second-order kinetic processes is needed to model the experimental data. Our data suggest that HRP oxidizes DIP in general by a two-electron process or that the cation radical is very unstable so that the one-electron process is only detected in the presence of anionic surfactant, which stabilizes significantly the DIP*+ intermediate.


Assuntos
Dipiridamol/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Micelas , Oxirredução , Espectrofotometria
20.
Photochem Photobiol ; 83(6): 1379-85, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18028212

RESUMO

Dipyridamole (DIP) is known for its vasodilating and antiplatelet activity, exhibiting also a potent antioxidant effect, strongly inhibiting lipid peroxidation. This effect has been studied in mitochondria and a correlation between the DIP derivatives' structure, the ability to bind to micelles and biological activity has been suggested. In the present work, the quenching of singlet molecular oxygen, O(2)((1)Delta(g)), by DIP and RA47 and RA25 derivatives was analyzed in acetonitrile (ACN) and aqueous acid solutions. Laser flash photolysis excitation of methylene blue (MB) was made at 532 nm and monomol light emission of O(2)((1)Delta(g)) was monitored at 1270 nm. Bimolecular quenching constants in ACN are consistent with an efficient physical quenching, presenting values a bit lower than the diffusion limit (k(t) = 3.4-6.8 x 10(8) M(-1 )s(-1)). The quenching process probably occurs via reversible charge transfer with the formation of an exciplex. Calculation of DeltaG(et) associated with O(2)((1)Delta(g)) quenching corroborates with uncompleted electron transfer. In aqueous acid solutions (pH = 3.0), the k(t) values for DIP and derivatives are 20-fold smaller when compared with ACN. The electrochemical properties of DIP in ACN are characterized by two consecutive one-electron processes with half-wave oxidation potentials of 0.30 and 0.67 V vs saturated calomel electrode (SCE). However, in an aqueous acid medium, a single oxidation wave is observed involving a two-electron process (0.80 V vs SCE). Therefore, O(2)((1)Delta(g)) quenching is consistent with electrochemical data.


Assuntos
Dipiridamol/análogos & derivados , Oxigênio Singlete/química , Dipiridamol/química , Eletroquímica , Estrutura Molecular , Oxirredução , Fotodegradação , Solventes , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA