Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 258: 119331, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660459

RESUMO

Among the cognitive symptoms that are associated with Parkinson's disease (PD), alterations in cognitive action control (CAC) are commonly reported in patients. CAC enables the suppression of an automatic action, in favor of a goal-directed one. The implementation of CAC is time-resolved and arguably associated with dynamic changes in functional brain networks. However, the electrophysiological functional networks involved, their dynamic changes, and how these changes are affected by PD, still remain unknown. In this study, to address this gap of knowledge, 10 PD patients and 10 healthy controls (HC) underwent a Simon task while high-density electroencephalography (HD-EEG) was recorded. Source-level dynamic connectivity matrices were estimated using the phase-locking value in the beta (12-25 Hz) and gamma (30-45 Hz) frequency bands. Temporal independent component analyses were used as a dimension reduction tool to isolate the task-related brain network states. Typical microstate metrics were quantified to investigate the presence of these states at the subject-level. Our results first confirmed that PD patients experienced difficulties in inhibiting automatic responses during the task. At the group-level, we found three functional network states in the beta band that involved fronto-temporal, temporo-cingulate and fronto-frontal connections with typical CAC-related prefrontal and cingulate nodes (e.g., inferior frontal cortex). The presence of these networks did not differ between PD patients and HC when analyzing microstates metrics, and no robust correlations with behavior were found. In the gamma band, five networks were found, including one fronto-temporal network that was identical to the one found in the beta band. These networks also included CAC-related nodes previously identified in different neuroimaging modalities. Similarly to the beta networks, no subject-level differences were found between PD patients and HC. Interestingly, in both frequency bands, the dominant network at the subject-level was never the one that was the most durably modulated by the task. Altogether, this study identified the dynamic functional brain networks observed during CAC, but did not highlight PD-related changes in these networks that might explain behavioral changes. Although other new methods might be needed to investigate the presence of task-related networks at the subject-level, this study still highlights that task-based dynamic functional connectivity is a promising approach in understanding the cognitive dysfunctions observed in PD and beyond.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Encéfalo/fisiologia , Cognição , Eletroencefalografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
2.
Neuroimage ; 231: 117829, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549758

RESUMO

Motor, sensory and cognitive functions rely on dynamic reshaping of functional brain networks. Tracking these rapid changes is crucial to understand information processing in the brain, but challenging due to the great variety of dimensionality reduction methods used at the network-level and the limited evaluation studies. Using Magnetoencephalography (MEG) combined with Source Separation (SS) methods, we present an integrated framework to track fast dynamics of electrophysiological brain networks. We evaluate nine SS methods applied to three independent MEG databases (N=95) during motor and memory tasks. We report differences between these methods at the group and subject level. We seek to help researchers in choosing objectively the appropriate SS method when tracking fast reconfiguration of functional brain networks, due to its enormous benefits in cognitive and clinical neuroscience.


Assuntos
Benchmarking/métodos , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Bases de Dados Factuais , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Adulto Jovem
3.
Commun Biol ; 7(1): 790, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951602

RESUMO

Neuroscience research has shown that specific brain patterns can relate to creativity during multiple tasks but also at rest. Nevertheless, the electrophysiological correlates of a highly creative brain remain largely unexplored. This study aims to uncover resting-state networks related to creative behavior using high-density electroencephalography (HD-EEG) and to test whether the strength of functional connectivity within these networks could predict individual creativity in novel subjects. We acquired resting state HD-EEG data from 90 healthy participants who completed a creative behavior inventory. We then employed connectome-based predictive modeling; a machine-learning technique that predicts behavioral measures from brain connectivity features. Using a support vector regression, our results reveal functional connectivity patterns related to high and low creativity, in the gamma frequency band (30-45 Hz). In leave-one-out cross-validation, the combined model of high and low networks predicts individual creativity with very good accuracy (r = 0.36, p = 0.00045). Furthermore, the model's predictive power is established through external validation on an independent dataset (N = 41), showing a statistically significant correlation between observed and predicted creativity scores (r = 0.35, p = 0.02). These findings reveal large-scale networks that could predict creative behavior at rest, providing a crucial foundation for developing HD-EEG-network-based markers of creativity.


Assuntos
Encéfalo , Criatividade , Eletroencefalografia , Descanso , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Adulto , Encéfalo/fisiologia , Adulto Jovem , Descanso/fisiologia , Conectoma/métodos
4.
J Neural Eng ; 20(1)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36538817

RESUMO

Objective.Functional connectivity networks explain the different brain states during the diverse motor, cognitive, and sensory functions. Extracting connectivity network configurations and their temporal evolution is crucial for understanding brain function during diverse behavioral tasks.Approach.In this study, we introduce the use of dynamic mode decomposition (DMD) to extract the dynamics of brain networks. We compared DMD with principal component analysis (PCA) using real magnetoencephalography data during motor and memory tasks.Main results.The framework generates dominant connectivity brain networks and their time dynamics during simple tasks, such as button press and left-hand movement, as well as more complex tasks, such as picture naming and memory tasks. Our findings show that the proposed methodology with both the PCA-based and DMD-based approaches extracts similar dominant connectivity networks and their corresponding temporal dynamics.Significance.We believe that the proposed methodology with both the PCA and the DMD approaches has a very high potential for deciphering the spatiotemporal dynamics of electrophysiological brain network states during tasks.


Assuntos
Mapeamento Encefálico , Magnetoencefalografia , Magnetoencefalografia/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Movimento , Imageamento por Ressonância Magnética/métodos
5.
Sci Rep ; 12(1): 18137, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307518

RESUMO

Although Alzheimer's disease is the most prevalent form of dementia, there are no treatments capable of slowing disease progression. A lack of reliable disease endpoints and/or biomarkers contributes in part to the absence of effective therapies. Using machine learning to analyze EEG offers a possible solution to overcome many of the limitations of current diagnostic modalities. Here we develop a logistic regression model with an accuracy of 81% that addresses many of the shortcomings of previous works. To our knowledge, no other study has been able to solve the following problems simultaneously: (1) a lack of automation and unbiased removal of artifacts, (2) a dependence on a high level of expertise in data pre-processing and ML for non-automated processes, (3) the need for very large sample sizes and accurate EEG source localization using high density systems, (4) and a reliance on black box ML approaches such as deep neural nets with unexplainable feature selection. This study presents a proof-of-concept for an automated and scalable technology that could potentially be used to diagnose AD in clinical settings as an adjunct to conventional neuropsychological testing, thus enhancing efficiency, reproducibility, and practicality of AD diagnosis.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Reprodutibilidade dos Testes , Aprendizado de Máquina , Artefatos , Biomarcadores
6.
J Neural Eng ; 19(5)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167052

RESUMO

Objective.Electro/Magnetoencephalography (EEG/MEG) source-space network analysis is increasingly recognized as a powerful tool for tracking fast electrophysiological brain dynamics. However, an objective and quantitative evaluation of pipeline steps is challenging due to the lack of realistic 'controlled' data. Here, our aim is two-folded: (a) provide a quantitative assessment of the advantages and limitations of the analyzed techniques and (b) introduce (and share) a complete framework that can be used to optimize the entire pipeline of EEG/MEG source connectivity.Approach.We used a human brain computational model containing both physiologically based cellular GABAergic and Glutamatergic circuits coupled through Diffusion Tensor Imaging, to generate high-density EEG recordings. We designed a scenario of successive gamma-band oscillations in distinct cortical areas to emulate a virtual picture-naming task. We identified fast time-varying network states and quantified the performance of the key steps involved in the pipeline: (a) inverse models to reconstruct cortical-level sources, (b) functional connectivity measures to compute statistical interdependency between regional signals, and (c) dimensionality reduction methods to derive dominant brain network states (BNS).Main results.Using a systematic evaluation of the different decomposition techniques, results show significant variability among tested algorithms in terms of spatial and temporal accuracy. We outlined the spatial precision, the temporal sensitivity, and the global accuracy of the extracted BNS relative to each method. Our findings suggest a good performance of weighted minimum norm estimate/ Phase Locking Value combination to elucidate the appropriate functional networks and ICA techniques to derive relevant dynamic BNS.Significance.We suggest using such brain models to go further in the evaluation of the different steps and parameters involved in the EEG/MEG source-space network analysis. This can reduce the empirical selection of inverse model, connectivity measure, and dimensionality reduction method as some of the methods can have a considerable impact on the results and interpretation.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Simulação por Computador , Imagem de Tensor de Difusão , Eletroencefalografia/métodos , Magnetoencefalografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA