Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Sci Food Agric ; 94(8): 1607-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24186725

RESUMO

BACKGROUND: In recent decades, bioconversion of lignocellulosic biomass to biofuel (ethanol and biodiesel) has been extensively investigated. The three main chemical constituents of biomass are cellulose, hemicellulose and lignin. Cellulose and hemicellulose are polysaccharides of primarily fermentable sugars, glucose and xylose respectively. Hemicellulose also includes small fermentable fractions of arabinose, galactose and mannose. The main issue in converting lignocellulosic biomass to fuel ethanol is the accessibility of the polysaccharides for enzymatic breakdown into monosaccharides. This study focused on the use of steam explosion as the pretreatment method for canola straw as lignocellulosic biomass. RESULTS: Result showed that steam explosion treatment of biomass increased cellulose accessibility and it hydrolysis by enzyme hydrolysis. Following 72 h of enzyme hydrolysis, a maximum cellulose conversion to glucose yield of 29.40% was obtained for the steam-exploded sample while the control showed 11.60% glucose yields. Steam explosion pretreatment increased glucose production and glucose yield by 200% and 153.22%, respectively, compared to the control sample. The crystalline index increased from 57.48% in untreated canola straw to 64.72% in steam-exploded samples. CONCLUSION: Steam explosion pretreatment of biomass increased cellulose accessibility, and enzymatic hydrolysis increased glucose production and glucose yield of canola straw.


Assuntos
Biocombustíveis , Brassica rapa/química , Celulase/metabolismo , Lignina/metabolismo , Polissacarídeos/metabolismo , Vapor , Biomassa , Celulose/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Hidrólise , Monossacarídeos/metabolismo , Trichoderma/enzimologia
2.
Heliyon ; 10(11): e32423, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961901

RESUMO

Torrefaction treatment improves biomass grindability by transforming the fibrous herbaceous to a more brittle and lighter coal-like material. Microwave-assisted torrefaction is a promising technology for biomass conversion into energy, fuels, and chemicals. The study applied microwave absorbers in the torrefaction process to improve the thermochemical characteristics and grindability of switchgrass. Switchgrass in two particle sizes was torrefied in a microwave reactor with biochar added as a microwave absorber under inert conditions. After torrefaction, the geometric mean particle and size distribution and selected physical characteristics were evaluated, and the grindability of the torrefied ground and chopped with and without biochar were compared with those of untreated switchgrass. The geometric diameter results decreased, and the specific energy required for grinding torrefied switchgrass with biochar was significantly reduced with extended residence times and at a torrefaction temperature of 300 °C. After grinding, the lowest grinding energy of 32.82 kJ at 300 °C/20 min was recorded with torrefied ground switchgrass/biochar. The 10% biochar added/250 °C resulted in deep cell wall disarrangement, whereas at a torrefaction temperature of 300 °C, large surface deformation and carbonized weight fractions were observed.

3.
Polymers (Basel) ; 16(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611254

RESUMO

This study aims to enhance value addition to agricultural byproducts to produce composites by the solution casting technique. It is well known that PLA is moisture-sensitive and deforms at high temperatures, which limits its use in some applications. When blending with plant-based fibers, the weak point is the poor filler-matrix interface. For this reason, surface modification was carried out on hemp and flax fibers via acetylation and alkaline treatments. The fibers were milled to obtain two particle sizes of <75 µm and 149-210 µm and were blended with poly (lactic) acid at different loadings (0, 2.5%, 5%, 10%, 20%, and 30%) to form a composite film The films were characterized for their spectroscopy, physical, and mechanical properties. All the film specimens showed C-O/O-H groups and the π-π interaction in untreated flax fillers showed lignin phenolic rings in the films. It was noticed that the maximum degradation temperature occurred at 362.5 °C. The highest WVPs for untreated, alkali-treated, and acetylation-treated composites were 20 × 10-7 g·m/m2 Pa·s (PLA/hemp30), 7.0 × 10-7 g·m/m2 Pa·s (PLA/hemp30), and 22 × 10-7 g·m/m2 Pa·s (PLA/hemp30), respectively. Increasing the filler content caused an increase in the color difference of the composite film compared with that of the neat PLA. Alkali-treated PLA/flax composites showed significant improvement in their tensile strength, elongation at break, and Young's modulus at a 2.5 or 5% filler loading. An increase in the filler loadings caused a significant increase in the moisture absorbed, whereas the water contact angle decreased with an increasing filler concentration. Flax- and hemp-induced PLA-based composite films with 5 wt.% loadings showed a more stable compromise in all the examined properties and are expected to provide unique industrial applications with satisfactory performance.

4.
Artigo em Inglês | MEDLINE | ID: mdl-24779137

RESUMO

Laboratory-prepared samples of wheat distillers grain with solubles with varying condensed distillers solubles (CDS) content were dried under varying microwave power, and microwave convection settings using a domestic microwave oven to examine their effect on the chemical, structural, color, flow, compression, thermal, and frictional properties of the product, which is dried distillers grain with solubles (DDGS). As CDS level increased, protein and ash content increased, while fat and fiber content decreased in wheat-based DDGS. Fat content was also markedly effected by the microwave oven drying conditions. While CDS level, microwave power or microwave convection setting, and/or their interactions significantly effected a number of physical properties; results indicated that CDS level had a stronger influence compared to the other factors. DDGS samples with high CDS levels were significantly denser, finer but more differentiated in size, less flowable, and less dispersible. These also produced denser and stronger pellets.


Assuntos
Dessecação/métodos , Grão Comestível/química , Grão Comestível/efeitos da radiação , Micro-Ondas , Modelos Químicos , Extratos Vegetais/química , Extratos Vegetais/efeitos da radiação , Força Compressiva , Simulação por Computador , Destilação/métodos , Fricção , Teste de Materiais , Solubilidade , Condutividade Térmica , Viscosidade
5.
Front Microbiol ; 14: 1130196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089565

RESUMO

Advancing microbial pretreatment of lignocellulose has the potential not only to reduce the carbon footprint and environmental impacts of the pretreatment processes from cradle-to-grave, but also increase biomass valorization, support agricultural growers, and boost the bioeconomy. Mathematical modeling of microbial pretreatment of lignocellulose provides insights into the metabolic activities of the microorganisms as responses to substrate and environment and provides baseline targets for the design, development, and optimization of solid-state-fermentation (SSF) bioreactors, including substrate concentrations, heat and mass transfer. In this study, the growth of Trametes versicolor 52J (TV52J), Trametes versicolor m4D (TVm4D), and Phanerochaete chrysosporium (PC) on camelina straw (CS) and switchgrass (SG) during an SSF process was examined. While TV52J illustrated the highest specific growth rate and maximum cell concentration, a mutant strain deficient in cellulose catabolism, TVm4D, performed best in terms of holocellulose preservation and delignification. The hybrid logistic-Monod equation along with holocellulose consumption and delignification models described well the growth kinetics. The oxygen uptake rate and carbon dioxide production rate were directly correlated to the fungal biomass concentration; however, a more sophisticated non-linear relationship might explain those correlations better than a linear model. This study provides an informative baseline for developing SSF systems to integrate fungal pretreatment into a large-scale, on-farm, wet-storage process for the utilization of agricultural residues as feedstocks for biofuel production.

6.
Bioengineering (Basel) ; 9(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36004888

RESUMO

In recent years, cannabis (Cannabis sativa L.) has been legalized by many countries for production, processing, and use considering its tremendous medical and industrial applications. Cannabis contains more than a hundred biomolecules (cannabinoids) which have the potentiality to cure different chronic diseases. After harvesting, cannabis undergoes different postharvest operations including drying, curing, storage, etc. Presently, the cannabis industry relies on different traditional postharvest operations, which may result in an inconsistent quality of products. In this review, we aimed to describe the biosynthesis process of major cannabinoids, postharvest operations used by the cannabis industry, and the consequences of postharvest operations on the cannabinoid profile. As drying is the most important post-harvest operation of cannabis, the attributes associated with drying (water activity, equilibrium moisture content, sorption isotherms, etc.) and the significance of novel pre-treatments (microwave heating, cold plasma, ultrasound, pulse electric, irradiation, etc.) for improvement of the process are thoroughly discussed. Additionally, other operations, such as trimming, curing, packaging and storage, are discussed, and the effect of the different postharvest operations on the cannabinoid yield is summarized. A critical investigation of the factors involved in each postharvest operation is indeed key for obtaining quality products and for the sustainable development of the cannabis industry.

7.
Materials (Basel) ; 13(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456240

RESUMO

In the present study, variable forms of pelletized chitosan adsorbents were prepared and their sulfate uptake properties in aqueous solution was studied in a fixed-bed column system. Unmodified chitosan pellets (CP), cross-linked chitosan pellets with glutaraldehyde (CL-CP), and calcium-doped forms of these pellets (Ca-CP, Ca-CL-CP) were prepared, where the removal efficiencies and breakthrough curves were studied. Dynamic adsorption experiments were conducted at pH 4.5 and 6.5 with a specific flow rate of 3 mL/min, fixed-bed height of 200 mm, and an initial sulfate concentration of 1000 mg/L. Breakthrough parameters demonstrated that Ca-CP had the best sulfate removal among the adsorbents, where the following adsorption parameters were obtained: breakthrough time (75 min), exhaust time (300 min), maximum sulfate adsorption capacity (qmax; 46.6 mg/g), and sulfate removal (57%) at pH 4.5. Two well-known kinetic adsorption models, Thomas and Yoon-Nelson, were fitted to the experimental kinetic data to characterize the breakthrough curves. The fixed-bed column experimental results were well-fitted by both models and the maximum adsorption capacity (46.9 mg/g) obtained was for the Ca-CP adsorbent. A regeneration study over four adsorption-desorption cycles suggested that Ca-CP is a promising adsorbent for sulfate removal in a fixed-bed column system.

8.
Bioresour Technol ; 249: 196-205, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29040855

RESUMO

This study undertakes technoeconomic analysis of commercial production of hydro-processed renewable jet (HRJ) fuel from camelina oil in the Canadian Prairies. An engineering economic model designed in SuperPro Designer® investigated capital investment, scale, and profitability of producing HRJ and co-products (biodiesel, naphtha, LPG, and propane) based on biorefinery plant sizes of 112.5-675 million L annum-1. Under base case scenario, the minimum selling price (MSP) of HRJ was $1.06 L-1 for a biorefinery plant with size of 225 million L. However, it could range from $0.40 to $1.71 L-1 given variations in plant capacity, feedstock cost, and co-product credits. MSP is highly sensitive to camelina feedstock cost and co-product credits, with little sensitivity to capital cost, discount rate, plant capacity, and hydrogen cost. Marginal and average cost curves suggest the region could support an HRJ plant capacity of up to 675 million L annum-1 (capital investment of $167 million).


Assuntos
Biocombustíveis , Pradaria , Canadá , Custos e Análise de Custo , Hidrogênio
9.
Bioresour Technol ; 98(1): 38-45, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16442280

RESUMO

The objective of this study was to determine the specific energy requirements for the compression of fractionated sun-cured and dehydrated alfalfa chops, when subjected to different pressures and holding times. The compression behavior of fractionated sun-cured and dehydrated alfalfa chops was studied using a single cubing unit capable of making one cube in a single stroke of the plunger. The cube die dimensions were 30 mm x 30 mm in cross-section and an effective depth of compression of 0.38 m. The initial moisture content of dehydrated and sun-cured chops were 6% and 7% (wb), respectively. A stack of two sieves (instead of five) was used along with a pan to achieve leaf and stem separation. The nominal opening sizes of two sieves with square holes were 3.96 and 1.17 mm, respectively. Leaf and stem fractions were combined later to obtain five different samples each for sun-cured and dehydrated alfalfa with leaf content ranging from 0% to 100% by mass in increments of 25%. The chop moisture content and preheat temperature before compaction was 10% (wb) and 75 degrees C, respectively. The cube die temperature was maintained at 90+/-5 degrees C. The mass of chops used for making each cube was 23+/-02 g. A hydraulic press was used to apply 9.0, 12.0 and 14.0 MPa of pressures through a plunger. After compression, the plunger was held in place for 10 and 30s, before the compacted forage was extracted. Empirical equations were fitted to the data relating specific energy for cube making to pressure, residence time, and leaf content.


Assuntos
Conservação de Recursos Energéticos , Medicago sativa , Biomassa , Pressão
10.
Artigo em Inglês | MEDLINE | ID: mdl-18161423

RESUMO

Heat sensitive properties (aromatic, medicinal, color) provide herbs and spices with their high market value. In order to prevent extreme loss of heat sensitive properties when drying herbs, they are normally dried at low temperatures for longer periods of time to preserve these sensory properties. High energy consumption often results from drying herbs over a long period. Coriander (Coriandrum sativum L., Umbelliferae) was dehydrated in two different drying units (thin layer convection and microwave dryers) in order to compare the drying and final product quality (color) characteristics. Microwave drying of the coriander foliage was faster than convective drying. The entire drying process took place in the falling rate period for both microwave and convective dried samples. The drying rate for the microwave dried samples ranged from 42.3 to 48.2% db/min and that of the convective dried samples ranged from 7.1 to 12.5% db/min. The fresh sample color had the lowest L value at 26.83 with higher L values for all dried samples. The results show that convective thin layer dried coriander samples exhibited a significantly greater color change than microwave dried coriander samples. The color change index values for the microwave dried samples ranged from 2.67 to 3.27 and that of the convective dried samples varied from 4.59 to 6.58.


Assuntos
Coriandrum/química , Dessecação/métodos , Micro-Ondas , Folhas de Planta/química , Cor , Dessecação/instrumentação
11.
Bioengineering (Basel) ; 4(2)2017 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-28952504

RESUMO

The effects of microwave-assisted alkali pre-treatment on pellets' characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield.

12.
Bioresour Technol ; 97(12): 1420-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16139500

RESUMO

Corn stover is a major crop residue for biomass conversion to produce chemicals and fuels. One of the problems associated with the supply of corn stover to conversion plants is the delivery of feedstock at a low cost. Corn stover has low bulk density and it is difficult to handle. In this study, chopped corn stover samples were compacted in a piston cylinder under three pressure levels (5, 10, 15 MPa) and at three moisture content levels (5%, 10%, 15% (wb)) to produce briquettes. The total energy requirement to compress and extrude briquette ranged from 12 to 30 MJ/t. The briquette density ranged from 650 to 950 kg/m3 increasing with pressure. Moisture content had also a significant effect on briquette density, durability and stability. Low moisture stover (5-10%) resulted in denser, more stable and more durable briquettes than high moisture stover (15%).


Assuntos
Biotecnologia/métodos , Zea mays , Agricultura , Análise de Variância , Biomassa , Celulose/metabolismo , Fermentação , Pressão
13.
Bioresour Technol ; 214: 242-247, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27136611

RESUMO

The effects and mechanism of ball milling on the torrefaction process were studied. Ball- and hammer-milled (screen size 1mm) pine sawdust samples were torrefied at three temperatures (230, 260, and 290°C) and two durations (30 and 60min) to investigate into their torrefaction behavior and physicochemical properties. The results showed that, under identical torrefaction conditions, torrefied ball-milled pine sawdust had a higher carbon content and fixed carbon, and lower hydrogen and oxygen contents than torrefied hammer-milled pine sawdust. Torrefied ball-milled pine sawdust produced lower mass and energy yields, but higher heating values than torrefied hammer-milled pine sawdust. Ball milling destroyed the crystalline structure of cellulose and thus reduced the thermal stability of hemicellulose, cellulose, and lignin, causing them to degrade at relatively lower temperatures. In conclusion, biomass pretreated with a combination of ball milling and torrefaction has the potential to produce an alternative fuel to coal.


Assuntos
Pinus/química , Eliminação de Resíduos/métodos , Madeira/química , Biocombustíveis , Biomassa , Carbono/análise , Carbono/química , Celulose/química , Calefação , Hidrogênio/análise , Hidrogênio/química , Lignina/análise , Lignina/química , Microscopia Eletrônica de Varredura , Oxigênio/análise , Oxigênio/química , Polissacarídeos/química , Temperatura , Termogravimetria , Difração de Raios X
14.
Bioresour Technol ; 110: 355-63, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22330599

RESUMO

This study presents a technoeconomic analysis of wheat straw densification in Canada's prairie province of Manitoba as an integral part of biomass-to-cellulosic-ethanol infrastructure. Costs of wheat straw bale and pellet transportation and densification are analysed, including densification plant profitability. Wheat straw collection radius increases nonlinearly with pellet plant capacity, from 9.2 to 37km for a 2-35tonnesh(-1) plant. Bales are cheaper under 250km, beyond which the cheapest feedstocks are pellets from the largest pellet plant that can be built to exploit economies of scale. Feedstocks account for the largest percentage of variable costs. Marginal and average cost curves suggest Manitoba could support a pellet plant up to 35tonnesh(-1). Operating below capacity (75-50%) significantly erodes a plant's net present value (NPV). Smaller plants require higher NPV break-even prices. Very large plants have considerable risk under low pellet prices and increased processing costs.


Assuntos
Custos e Análise de Custo , Triticum , Biomassa , Investimentos em Saúde , Manitoba
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA