RESUMO
The first year of life is a key period of brain development, characterized by dramatic structural and functional modifications. Here, we measured rest cerebral blood flow (CBF) modifications throughout babies' first year of life using arterial spin labeling magnetic resonance imaging sequence in 52 infants, from 3 to 12 months of age. Overall, global rest CBF significantly increased during this age span. In addition, we found marked regional differences in local functional brain maturation. While primary sensorimotor cortices and insula showed early maturation, temporal and prefrontal region presented great rest CBF increase across the first year of life. Moreover, we highlighted a late and remarkably synchronous maturation of the prefrontal and posterior superior temporal cortices. These different patterns of regional cortical rest CBF modifications reflect a timetable of local functional brain maturation and are consistent with baby's cognitive development within the first year of life.
Assuntos
Encéfalo/crescimento & desenvolvimento , Neurogênese/fisiologia , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , DescansoRESUMO
Posterior fossa arachnoid cysts (PFAC) may produce not only neurological symptoms but also other symptoms still poorly understood such as behavioral and learning deficits, awkwardness, and difficulties in social interaction. These subtle social impairments have not been formally described and their underlying brain mechanisms remain unknown. In the present case-control study, we aimed to empirically characterize social impairments in a pediatric population with PFAC using eye tracking. In addition, we investigated putative functional cortical abnormalities in these children using arterial spin labeling magnetic resonance imaging. Overall, 15 patients with PFAC (3f, age = 9.4 ± 4 years) and 43 typically developing volunteer children (16f, age = 9.3 ± 3.6 years) were enrolled in this study. Eye tracking was used to record gaze patterns during visualization of social interaction scenes. Viewing times to faces of characters and non-social background were analyzed. A voxel-wise whole-brain analysis was performed to investigate rest cerebral blood flow (CBF) abnormalities. Significantly reduced viewing time to faces was observed in patients compared with controls (p < 0.01). A ROC curve analysis revealed that 30% of PFAC patients presented viewing time to the face lower than the cutoff, while none of the controls did. The whole-brain analysis revealed a significant decrease in rest CBF in PFAC patients compared with controls bilaterally in the superior temporal gyrus and the temporoparietal junction (TPJ) (p < 0.05 FWE). These results suggest that early life PFAC may have an impact on functional activity of the temporal lobe, which could be associated with social perception deficits.
Assuntos
Cistos Aracnóideos/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Fossa Craniana Posterior/diagnóstico por imagem , Movimentos Oculares/fisiologia , Descanso/fisiologia , Percepção Social , Adolescente , Cistos Aracnóideos/psicologia , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Descanso/psicologiaRESUMO
Kabuki syndrome (KS) is a rare congenital disorder (1/32000 births) characterized by distinctive facial features, intellectual disability, short stature, and dermatoglyphic and skeletal abnormalities. In the last decade, mutations in KMT2D and KDM6A were identified as a major cause of kabuki syndrome. Although genetic abnormalities have been highlighted in KS, brain abnormalities have been little explored. Here, we have investigated brain abnormalities in 6 patients with KS (4 males; Mageâ¯=â¯10.96â¯years, SDâ¯=â¯2.97â¯years) with KMT2D mutation in comparison with 26 healthy controls (17 males; Mageâ¯=â¯10.31â¯years, SDâ¯=â¯2.96â¯years). We have used MRI to explore anatomical and functional brain abnormalities in patients with KS. Anatomical abnormalities in grey matter volume were assessed by cortical and subcortical analyses. Functional abnormalities were assessed by comparing rest cerebral blood flow measured with arterial spin labeling-MRI. When compared to healthy controls, KS patients had anatomical alterations characterized by grey matter decrease localized in the bilateral precentral gyrus and middle frontal gyrus. In addition, KS patients also presented functional alterations characterized by cerebral blood flow decrease in the left precentral gyrus and middle frontal gyrus. Moreover, subcortical analyses revealed significantly decreased grey matter volume in the bilateral hippocampus and dentate gyrus in patients with KS. Our results strongly indicate anatomical and functional brain abnormalities in KS. They suggest a possible neural basis of the cognitive symptoms observed in KS, such as fine motor impairment, and indicate the need to further explore the consequences of such brain abnormalities in this disorder. Finally, our results encourage further imaging-genetics studies investigating the link between genetics, anatomical and functional brain alterations in KS.
Assuntos
Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Face/anormalidades , Doenças Hematológicas/patologia , Doenças Hematológicas/fisiopatologia , Doenças Vestibulares/patologia , Doenças Vestibulares/fisiopatologia , Anormalidades Múltiplas/diagnóstico por imagem , Adolescente , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Face/irrigação sanguínea , Face/diagnóstico por imagem , Face/patologia , Face/fisiopatologia , Feminino , Doenças Hematológicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Marcadores de Spin , Doenças Vestibulares/diagnóstico por imagemRESUMO
An efficient registration strategy is described that aims to help solve delicate medical imaging registration problems. It consists of running several registration methods for each dataset and selecting the best one for each specific dataset, according to an evaluation criterion. Finally, the quality of the registration results, obtained with the best method, is visually scored by an expert as excellent, correct or poor. The strategy was applied to coregister Technetium-99m Sestamibi SPECT and MRI data in the framework of a follow-up protocol in patients with high grade gliomas receiving antiangiogenic therapy. To adapt the strategy to this clinical context, a robust semi-automatic evaluation criterion based on the physiological uptake of the Sestamibi tracer was defined. A panel of eighteen multimodal registration algorithms issued from BrainVisa, SPM or AIR software environments was systematically applied to the clinical database composed of sixty-two datasets. According to the expert visual validation, this new strategy provides 85% excellent registrations, 12% correct ones and only 3% poor ones. These results compare favorably to the ones obtained by the globally most efficient registration method over the whole database, for which only 61% of excellent registration results have been reported. Thus the registration strategy in its current implementation proves to be suitable for clinical application.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Neoplasias Encefálicas/metabolismo , Bases de Dados Factuais , Glioma/metabolismo , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Gradação de Tumores , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio Tc 99m Sestamibi/farmacocinética , Distribuição TecidualRESUMO
This paper proposes a framework to assess the potential value of 99mTc Sestamibi SPECT in addition to Gadolinium-enhanced MRI for the monitoring of patients with high grade gliomas under antiangiogenic treatment. It includes: 1) multimodal and monomodal high precision registration steps achieved thanks to a registration strategy which selects the best method among several ones for each dataset, 2) tumor segmentation steps dedicated to each modality and 3) a tumor comparison step which consists in the computation of some global (volume, intensity) and local (matching and mismatching) quantitative indices to analyze the tumor using different imaging modalities and at different times during the treatment. Each step is checked via 2D and 3D visualization. This framework was applied to a database of fifteen patients. For all patients, except one, the tumor volumes decrease globally and locally. Furthermore, a high correlation (r=0.77) was observed between MRI and Sestamibi tumor volumes. Finally, local indices show some possible mismatches between MRI Gadolinium uptake and Sestamibi uptake, which need to be further investigated.
Assuntos
Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia Computadorizada de Emissão de Fóton Único , Glioma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Monitorização Fisiológica , Tecnécio Tc 99m Sestamibi , Carga TumoralRESUMO
This paper proposes a new strategy to optimize the coregistration of Technetium-99m Sestamibi SPECT and MRI data in case of patients with high grade glioma. It consists in a personalized approach which selects, for each data set, the best registration method among several ones. To achieve this selection, a quantitative dedicated evaluation criterion based on the average intensities within specific anatomical structures corresponding to physiological areas of uptake of Sestamibi was defined. The strategy was applied to sixty-two data sets using nine registration methods based on mutual information and chamfer distance registration approaches, with different settings. It was implemented within the Anatomist/Brainvisa environment, using its basic registration functions. The visual evaluation by experts indicated that this strategy provides 60% good quality registrations, and 26% intermediate quality ones. Compared to the single use of the best global registration method, the number of registrations of good quality was multiplied by 1.4 when using the data specific strategy.