Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neuroeng Rehabil ; 20(1): 33, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934277

RESUMO

BACKGROUND: Unilateral spatial neglect (USN) is a debilitating neuropsychological syndrome that often follows brain injury, in particular a stroke affecting the right hemisphere. In current clinical practice, the assessment of neglect is based on old-fashioned paper-and-pencil and behavioral tasks, and sometimes relies on the examiner's subjective judgment. Therefore, there is a need for more exhaustive, objective and ecological assessments of USN. METHODS: In this paper, we present two tasks in immersive virtual reality to assess peripersonal and extrapersonal USN. The tasks are designed with several levels of difficulty to increase sensitivity of the assessment. We then validate the feasibility of both assessments in a group of healthy adult participants. RESULTS: We report data from a study with a group of neurologically unimpaired participants (N = 39). The results yield positive feedback on comfort, usability and design of the tasks. We propose new objective scores based on participant's performance captured by head gaze and hand position information, including, for instance, time of exploration, moving time towards left/right and time-to-reach, which could be used for the evaluation of the attentional spatial bias with neurological patients. Together with the number of omissions, the new proposed parameters can result in lateralized index ratios as a measure of asymmetry in space exploration. CONCLUSIONS: We presented two innovative assessments for USN based on immersive virtual reality, evaluating the far and the near space, using ecological tasks in multimodal, realistic environments. The proposed protocols and objective scores can help distinguish neurological patients with and without USN.


Assuntos
Transtornos da Percepção , Acidente Vascular Cerebral , Realidade Virtual , Adulto , Humanos , Percepção Espacial , Transtornos da Percepção/diagnóstico , Transtornos da Percepção/etiologia , Acidente Vascular Cerebral/complicações , Testes Neuropsicológicos , Lateralidade Funcional
2.
J Neuroeng Rehabil ; 14(1): 119, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149855

RESUMO

BACKGROUND: Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation. METHODS: Ten outpatient stroke survivors with chronic (>6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week). RESULTS: All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention. CONCLUSIONS: This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness. TRIAL REGISTRATION: This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650 ) on 14 March 2017.


Assuntos
Terapia por Exercício/métodos , Paresia/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Realidade Virtual , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Interface Usuário-Computador
3.
J Neuropsychol ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225801

RESUMO

The reported rate of the occurrence of unilateral spatial neglect (USN) is highly variable likely due to the lack of validity and low sensitivity of classical tools used to assess it. Virtual reality (VR) assessments try to overcome these limitations by proposing immersive and complex environments. Nevertheless, existing VR-based tasks are mostly focused only on near space and lack analysis of psychometric properties and/or clinical validation. The present study evaluates the clinical validity and sensitivity of a new immersive VR-based task to assess USN in the extra-personal space and examines the neuronal correlates of deficits of far space exploration. The task was administrated to two groups of patients with right (N = 28) or left (N = 11) hemispheric brain lesions, also undergoing classical paper-and-pencil assessment, as well as a group of healthy participants. Our VR-based task detected 44% of neglect cases compared to 31% by paper-and-pencil tests in the total sample. Importantly, 30% of the patients (with right or left brain lesions) with no clear sign of USN on the paper-and-pencil tests performed outside the normal range in the VR-based task. Voxel lesion-symptom mapping revealed that deficits detected in VR were associated with lesions in insular and temporal cortex, part of the neural network involved in spatial processing. These results show that our immersive VR-based task is efficient and sensitive in detecting mild to strong manifestations of USN affecting the extra-personal space, which may be undetected using standard tools.

4.
Front Psychol ; 9: 375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755378

RESUMO

The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification) and they shift their center of awareness toward the position of the avatar (self-location). However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented architectonic space.

5.
Science ; 317(5841): 1096-9, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17717189

RESUMO

Humans normally experience the conscious self as localized within their bodily borders. This spatial unity may break down in certain neurological conditions such as out-of-body experiences, leading to a striking disturbance of bodily self-consciousness. On the basis of these clinical data, we designed an experiment that uses conflicting visual-somatosensory input in virtual reality to disrupt the spatial unity between the self and the body. We found that during multisensory conflict, participants felt as if a virtual body seen in front of them was their own body and mislocalized themselves toward the virtual body, to a position outside their bodily borders. Our results indicate that spatial unity and bodily self-consciousness can be studied experimentally and are based on multisensory and cognitive processing of bodily information.


Assuntos
Imagem Corporal , Adulto , Cognição , Feminino , Humanos , Ilusões , Masculino , Distorção da Percepção , Inquéritos e Questionários , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA