Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 564(7736): 390-394, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532002

RESUMO

The electric-field-induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor1-4. In this scheme, 'on' is the ballistic flow of charge and spin along dissipationless edges of a two-dimensional quantum spin Hall insulator5-9, and 'off' is produced by applying an electric field that converts the exotic insulator to a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits4, which would necessitate electric-field-switched materials with conventional and topological bandgaps much greater than the thermal energy at room temperature, substantially greater than proposed so far6-8. Topological Dirac semimetals are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases3,10-16. Here we use scanning tunnelling microscopy and spectroscopy and angle-resolved photoelectron spectroscopy to show that mono- and bilayer films of the topological Dirac semimetal3,17 Na3Bi are two-dimensional topological insulators with bulk bandgaps greater than 300 millielectronvolts owing to quantum confinement in the absence of electric field. On application of electric field by doping with potassium or by close approach of the scanning tunnelling microscope tip, the Stark effect completely closes the bandgap and re-opens it as a conventional gap of 90 millielectronvolts. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy at room temperature (25 millielectronvolts), suggest that ultrathin Na3Bi is suitable for room-temperature topological transistor operation.

2.
Small ; 19(18): e2207310, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36751959

RESUMO

Hydrogen is emerging as an alternative clean fuel; however, its dependency on freshwater will be a threat to a sustainable environment. Seawater, an unlimited source, can be an alternative, but its salt-rich nature causes corrosion and introduces several competing reactions, hindering its use. To overcome these, a unique catalyst composed of porous sheets of nitrogen-doped NiMo3 P (N-NiMo3 P) having a sheet size of several microns is designed. The presence of large homogenous pores in the basal plane of these sheets makes them catalytically more active and ensures faster mass transfer. The introduction of N and Ni into MoP significantly tunes the electronic density of Mo, surface chemistry, and metal-non-metal bond lengths, optimizing surface energies, creating new active sites, and increasing electrical conductivity. The presence of metal-nitrogen bonds and surface polyanions increases the stability and improves anti-corrosive properties against chlorine chemistry. Ultimately, the N-NiMo3 P sheets show remarkable performance as it only requires overpotentials of 23 and 35 mV for hydrogen evolution reaction, and it catalyzes full water splitting at 1.52 and 1.55 V to achieve 10 mA cm-2 in 1 m KOH and seawater, respectively. Hence, structural and compositional control can make catalysts effective in realizing low-cost hydrogen directly from seawater.

3.
J Am Chem Soc ; 143(48): 20309-20319, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34826219

RESUMO

Deoxyribonucleic acid (DNA) has been hypothesized to act as a molecular wire due to the presence of an extended π-stack between base pairs, but the factors that are detrimental in the mechanism of charge transport (CT) across tunnel junctions with DNA are still unclear. Here we systematically investigate CT across dense DNA monolayers in large-area biomolecular tunnel junctions to determine when intrachain or interchain CT dominates and under which conditions the mechanism of CT becomes thermally activated. In our junctions, double-stranded DNA (dsDNA) is 30-fold more conductive than single-stranded DNA (ssDNA). The main reason for this large change in conductivity is that dsDNA forms ordered monolayers where intrachain tunneling dominates, resulting in high CT rates. By varying the temperature T and the length of the DNA fragments in the junctions, which determines the tunneling distance, we reveal a complex interplay between T, the length of DNA, and structural order on the mechanism of charge transport. Both the increase in the tunneling distance and the decrease in structural order result in a change in the mechanism of CT from coherent tunneling to incoherent tunneling (hopping). Our results highlight the importance of the interplay between structural order, tunneling distance, and temperature on the CT mechanism across DNA in molecular junctions.


Assuntos
DNA de Cadeia Simples/química , Condutividade Elétrica , Conformação de Ácido Nucleico , Temperatura
4.
Nano Lett ; 20(7): 5583-5589, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32568547

RESUMO

Materials with flat bands are considered as ideal platforms to explore strongly correlated physics such as the fractional quantum hall effect, high-temperature superconductivity, and more. In theory, a Kagome lattice with only nearest-neighbor hopping can give rise to a flat band. However, the successful fabrication of Kagome lattices is still very limited. Here, we provide a new design principle to construct the Kagome lattice by trapping atoms into Kagome arrays of potential valleys, which can be realized on a potassium-decorated phosphorus-gold surface alloy. Theoretical calculations show that the flat band is less correlated with the neighboring trivial electronic bands, which can be further isolated and dominate around the Fermi energy with increased Kagome lattice parameters of potassium atoms. Our results provide a new strategy for constructing Kagome lattices, which serve as an ideal platform to study topological and more general flat band phenomena.

5.
Nano Lett ; 19(8): 5340-5346, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31274321

RESUMO

Practical applications of two-dimensional (2D) black phosphorus (BP) are limited by its fast degradation under ambient conditions, for which many different mechanisms have been proposed; however, an atomic level understanding of the degradation process is still hindered by the absence of bottom-up methods for the growth of large-scale few-layer black phosphorus. Recent experimental success in the fabrication of single-layer blue phosphorus provides a model system to probe the oxidation mechanism of two-dimensional (2D) phosphorene down to single-layer thicknesses. Here, we report an atomic-scale investigation of the interaction between molecular oxygen and blue phosphorus. The atomic structure of blue phosphorus and the local binding sites of oxygen have been precisely identified using qPlus-based noncontact atomic force microscopy. A combination of low-temperature scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements reveal a thermally reversible oxidation process of blue phosphorus in a pure oxygen atmosphere. Our study clearly demonstrates the essential role of oxygen in the initial oxidation process, and it sheds further light on the fundamental pathways of the degradation mechanism.

6.
Nanotechnology ; 30(2): 025704, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30382023

RESUMO

The inelastic mean free path (IMFP) for carbon-based materials is notoriously challenging to model, and moving from bulk materials to 2D materials may exacerbate this problem, making the accurate measurements of IMFP in 2D carbon materials critical. The overlayer-film method is a common experimental method to estimate IMFP by measuring electron effective attenuation length (EAL). This estimation relies on an assumption that elastic scattering effects are negligible. We report here an experimental measurement of electron EAL in epitaxial graphene on SiC using photoelectron spectroscopy over an electron kinetic energy range of 50-1150 eV. We find a significant effect of the interface between the 2D carbon material and the substrate, indicating that the attenuation length in the so-called 'buffer layer' is smaller than for free-standing graphene. Our results also suggest that the existing models for estimating IMFPs may not adequately capture the physics of electron interactions in 2D materials.

7.
Angew Chem Int Ed Engl ; 58(51): 18591-18597, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31608578

RESUMO

The ability to use mechanical strain to steer chemical reactions creates completely new opportunities for solution- and solid-phase synthesis of functional molecules and materials. However, this strategy is not readily applied in the bottom-up on-surface synthesis of well-defined nanostructures. We report an internal strain-induced skeletal rearrangement of one-dimensional (1D) metal-organic chains (MOCs) via a concurrent atom shift and bond cleavage on Cu(111) at room temperature. The process involves Cu-catalyzed debromination of organic monomers to generate 1,5-dimethylnaphthalene diradicals that coordinate to Cu adatoms, forming MOCs with both homochiral and heterochiral naphthalene backbone arrangements. Bond-resolved non-contact atomic force microscopy imaging combined with density functional theory calculations showed that the relief of substrate-induced internal strain drives the skeletal rearrangement of MOCs via 1,3-H shifts and shift of Cu adatoms that enable migration of the monomer backbone toward an energetically favorable registry with the Cu(111) substrate. Our findings on this strain-induced structural rearrangement in 1D systems will enrich the toolbox for on-surface synthesis of novel functional materials and quantum nanostructures.

8.
Nanotechnology ; 29(14): 145601, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29376834

RESUMO

Growing graphene on SiC thin films on Si is a cheaper alternative to the growth on bulk SiC, and for this reason it has been recently intensively investigated. Here we study the effect of hydrogen intercalation on epitaxial graphene obtained by high temperature annealing on 3C-SiC/Si(111) in ultra-high vacuum. By using a combination of core-level photoelectron spectroscopy, low energy electron diffraction, and near-edge x-ray absorption fine structure (NEXAFS) we find that hydrogen saturates the Si atoms at the topmost layer of the substrate, leading to free-standing graphene on 3C-SiC/Si(111). The intercalated hydrogen fully desorbs after heating the sample at 850 °C and the buffer layer appears again, similar to what has been reported for bulk SiC. However, the NEXAFS analysis sheds new light on the effect of hydrogen intercalation, showing an improvement of graphene's flatness after annealing in atomic H at 600 °C. These results provide new insight into free-standing graphene fabrication on SiC/Si thin films.

9.
Phys Chem Chem Phys ; 19(21): 13562-13570, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28513743

RESUMO

Chiral separation using heterogeneous methods has long been sought after. Chiral metal surfaces have the potential to make it possible to model these systems using small amino acids, the building blocks for proteins. A comparison of submonolayer concentrations of alanine enantiomers adsorbed onto Cu{421}R has revealed a large geometrical differences between the two molecules as compared to the saturated coverage. Large differences were observed in HR-XPS and NEXAFS and complemented by theoretical DFT calculations. At approximately one third of a monolayer a comparison of the C1s XPS signal showed a shift in the methyl group of more than 300 meV indicating that the two enantiomers are in different chemical environments. NEXAFS spectroscopy confirmed the XPS variations and showed large differences in the orientation of the adsorbed molecules. Our DFT results show that the l-enantiomer is energetically the most stable in the {311} microfacet configuration. In contrast to the full monolayer coverage, these lower coverages showed enhanced selectivity.

10.
Nano Lett ; 16(5): 3210-4, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27104635

RESUMO

Topological Dirac semimetals (TDS) are three-dimensional analogues of graphene, with linear electronic dispersions in three dimensions. Nanoscale confinement of TDSs in thin films is a necessary step toward observing the conventional-to-topological quantum phase transition (QPT) with increasing film thickness, gated devices for electric-field control of topological states, and devices with surface-state-dominated transport phenomena. Thin films can also be interfaced with superconductors (realizing a host for Majorana Fermions) or ferromagnets (realizing Weyl Fermions or T-broken topological states). Here we report structural and electrical characterization of large-area epitaxial thin films of TDS Na3Bi on single crystal Al2O3[0001] substrates. Charge carrier mobilities exceeding 6,000 cm(2)/(V s) and carrier densities below 1 × 10(18) cm(-3) are comparable to the best single crystal values. Perpendicular magnetoresistance at low field shows the perfect weak antilocalization behavior expected for Dirac Fermions in the absence of intervalley scattering. At higher fields up to 0.5 T anomalously large quadratic magnetoresistance is observed, indicating that some aspects of the low field magnetotransport (µB < 1) in this TDS are yet to be explained.

11.
J Synchrotron Radiat ; 23(1): 374-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698087

RESUMO

An analysis program for near-edge X-ray absorption fine-structure (NEXAFS) spectra has been developed and implemented at the soft X-ray beamline of the Australian Synchrotron. The program allows for instant viewing of corrected data channels including normalizations to a standard, double normalizations when the standard itself has an undesired spectral response, and background subtraction. The program performs simple compositional analysis and peak fitting and includes rapid common calculations such as the average tilt angle of molecules with respect to the surface, and the determination of the complex index of refraction, which previously required intensive manual analysis. These functionalities make common manipulations carried out with NEXAFS data quick and straightforward as spectra are collected, greatly increasing the efficiency and overall throughput of NEXAFS experiments.

12.
Nano Lett ; 15(12): 8091-8, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26528623

RESUMO

The reversible selective hydrogenation and dehydrogenation of individual manganese phthalocyanine (MnPc) molecules has been investigated using photoelectron spectroscopy (PES), low-temperature scanning tunneling microscopy (LT-STM), synchrotron-based near edge X-ray absorption fine structure (NEXAFS) measurements, and supported by density functional theory (DFT) calculations. It is shown conclusively that interfacial and intramolecular charge transfer arises during the hydrogenation process. The electronic energetics upon hydrogenation is identified, enabling a greater understanding of interfacial and intramolecular charge transportation in the field of single-molecule electronics.

13.
Nano Lett ; 15(5): 3181-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25906248

RESUMO

An atomic-scale understanding of gas adsorption mechanisms on metal-porphyrins or metal-phthalocyanines is essential for their practical application in biological processes, gas sensing, and catalysis. Intensive research efforts have been devoted to the study of coordinative bonding with relatively active small molecules such as CO, NO, NH3, O2, and H2. However, the binding of single nitrogen atoms has never been addressed, which is both of fundamental interest and indeed essential for revealing the elementary chemical binding mechanism in nitrogen reduction processes. Here, we present a simple model system to investigate, at the single-molecule level, the binding of activated nitrogen species on the single Mn atom contained within the manganese phthalocyanine (MnPc) molecule supported on an inert graphite surface. Through the combination of in situ low-temperature scanning tunneling microscopy, scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations, the active site and the binding configuration between the activated nitrogen species (neutral nitrogen atom) and the Mn center of MnPc are investigated at the atomic scale.

14.
Nat Nanotechnol ; 19(6): 792-799, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38366224

RESUMO

The activity of electrocatalysts for the sulfur reduction reaction (SRR) can be represented using volcano plots, which describe specific thermodynamic trends. However, a kinetic trend that describes the SRR at high current rates is not yet available, limiting our understanding of kinetics variations and hindering the development of high-power Li||S batteries. Here, using Le Chatelier's principle as a guideline, we establish an SRR kinetic trend that correlates polysulfide concentrations with kinetic currents. Synchrotron X-ray adsorption spectroscopy measurements and molecular orbital computations reveal the role of orbital occupancy in transition metal-based catalysts in determining polysulfide concentrations and thus SRR kinetic predictions. Using the kinetic trend, we design a nanocomposite electrocatalyst that comprises a carbon material and CoZn clusters. When the electrocatalyst is used in a sulfur-based positive electrode (5 mg cm-2 of S loading), the corresponding Li||S coin cell (with an electrolyte:S mass ratio of 4.8) can be cycled for 1,000 cycles at 8 C (that is, 13.4 A gS-1, based on the mass of sulfur) and 25 °C. This cell demonstrates a discharge capacity retention of about 75% (final discharge capacity of 500 mAh gS-1) corresponding to an initial specific power of 26,120 W kgS-1 and specific energy of 1,306 Wh kgS-1.

15.
Adv Mater ; 36(24): e2312004, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402422

RESUMO

Quantum anomalous Hall (QAH) insulators transport charge without resistance along topologically protected chiral 1D edge states. Yet, in magnetic topological insulators to date, topological protection is far from robust, with zero-magnetic field QAH effect only realized at temperatures an order of magnitude below the Néel temperature TN, though small magnetic fields can stabilize QAH effect. Understanding why topological protection breaks down is therefore essential to realizing QAH effect at higher temperatures. Here a scanning tunneling microscope is used to directly map the size of exchange gap (Eg,ex) and its spatial fluctuation in the QAH insulator 5-layer MnBi2Te4. Long-range fluctuations of Eg,ex are observed, with values ranging between 0 (gapless) and 70 meV, appearing to be uncorrelated to individual surface point defects. The breakdown of topological protection is directly imaged, showing that the gapless edge state, the hallmark signature of a QAH insulator, hybridizes with extended gapless regions in the bulk. Finally, it is unambiguously demonstrated that the gapless regions originate from magnetic disorder, by demonstrating that a small magnetic field restores Eg,ex in these regions, explaining the recovery of topological protection in magnetic fields. The results indicate that overcoming magnetic disorder is the key to exploiting the unique properties of QAH insulators.

16.
Inorg Chem ; 52(15): 8409-15, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23844979

RESUMO

The pyrochlore-defect fluorite order-disorder transition has been studied for a series of oxides of the type Gd(2-x)Tb(x)Zr2O7 by a combination of diffraction and spectroscopy techniques. Synchrotron X-ray diffraction data suggest an abrupt transition from the coexistence of pyrochlore and defect fluorite phases to a single defect fluorite phase with increasing Tb content. However neutron diffraction data, obtained at λ ≈ 0.497 Å for all Gd-containing samples to minimize absorption, not only provide evidence for independent ordering of the anion and cation sublattices but also suggest that the disorder transition across the pyrochlore-defect fluorite boundary of Ln2Zr2O7 is rather gradual. Such disorder was also evident in X-ray absorption measurements at the Zr L3-edge, which showed a gradual increase in the effective coordination number of the Zr from near 6-coordinate in the pyrochlore rich samples to near 7-coordinate in the Tb rich defect fluorites. These results indicate the presence of ordered domains throughout the defect fluorite region, and demonstrate the gradual nature of the order-disorder transition across the Gd(2-x)Tb(x)Zr2O7 series.

17.
ACS Nano ; 17(16): 15441-15448, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552585

RESUMO

Emergent quantum phenomena in two-dimensional van der Waal (vdW) magnets are largely governed by the interplay between exchange and Coulomb interactions. The ability to precisely tune the Coulomb interaction enables the control of spin-correlated flat-band states, band gap, and unconventional magnetism in such strongly correlated materials. Here, we demonstrate a gate-tunable renormalization of spin-correlated flat-band states and bandgap in magnetic chromium tribromide (CrBr3) monolayers grown on graphene. Our gate-dependent scanning tunneling spectroscopy (STS) studies reveal that the interflat-band spacing and bandgap of CrBr3 can be continuously tuned by 120 and 240 meV, respectively, via electrostatic injection of carriers into the hybrid CrBr3/graphene system. This can be attributed to the self-screening of CrBr3 arising from the gate-induced carriers injected into CrBr3, which dominates over the weakened remote screening of the graphene substrate due to the decreased carrier density in graphene. Precise tuning of the spin-correlated flat-band states and bandgap in 2D magnets via electrostatic modulation of Coulomb interactions not only provides effective strategies for optimizing the spin transport channels but also may exert a crucial influence on the exchange energy and spin-wave gap, which could raise the critical temperature for magnetic order.

18.
ACS Appl Mater Interfaces ; 14(4): 6102-6108, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050569

RESUMO

Understanding the air stability of MnBi2Te4 thin films is crucial for the development and long-term operation of electronic devices based on magnetic topological insulators. In the present work, we study MnBi2Te4 thin films upon exposure to the atmosphere using a combination of synchrotron-based photoelectron spectroscopy, room-temperature electrical transport, and atomic force microscopy to determine the oxidation process. After 2 days of air exposure, a 2 nm thick oxide passivates the surface, corresponding to the oxidation of only the top two surface layers, with the underlying layers preserved. This protective oxide layer results in samples that still exhibit metallic conduction even after several days of air exposure. Furthermore, the work function decreases from 4.4 eV for pristine MnBi2Te4 to 4.0 eV after the formation of the oxide, along with only a small shift in the core levels, indicating minimal doping as a result of air exposure. With the oxide confined to the top surface layers, and the underlying layers preserved, it may be possible to explore new avenues in how to handle, prepare, and passivate future MnBi2Te4 devices.

19.
Nanoscale Adv ; 4(18): 3845-3854, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133344

RESUMO

Surface-supported molecular overlayers have demonstrated versatility as platforms for fundamental research and a broad range of applications, from atomic-scale quantum phenomena to potential for electronic, optoelectronic and catalytic technologies. Here, we report a structural and electronic characterisation of self-assembled magnesium phthalocyanine (MgPc) mono and bilayers on the Ag(100) surface, via low-temperature scanning tunneling microscopy and spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), density functional theory (DFT) and tight-binding (TB) modeling. These crystalline close-packed molecular overlayers consist of a square lattice with a basis composed of a single, flat-adsorbed MgPc molecule. Remarkably, ARPES measurements at room temperature on the monolayer reveal a momentum-resolved, two-dimensional (2D) electronic energy band, 1.27 eV below the Fermi level, with a width of ∼20 meV. This 2D band results from in-plane hybridization of highest occupied molecular orbitals of adjacent, weakly interacting MgPc's, consistent with our TB model and with DFT-derived nearest-neighbor hopping energies. This work opens the door to quantitative characterisation - as well as control and harnessing - of subtle electronic interactions between molecules in functional organic nanofilms.

20.
Nat Commun ; 12(1): 5714, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588446

RESUMO

Sulfur is an important electrode material in metal-sulfur batteries. It is usually coupled with metal anodes and undergoes electrochemical reduction to form metal sulfides. Herein, we demonstrate, for the first time, the reversible sulfur oxidation process in AlCl3/carbamide ionic liquid, where sulfur is electrochemically oxidized by AlCl4- to form AlSCl7. The sulfur oxidation is: 1) highly reversible with an efficiency of ~94%; and 2) workable within a wide range of high potentials. As a result, the Al-S battery based on sulfur oxidation can be cycled steadily around ~1.8 V, which is the highest operation voltage in Al-S batteries. The study of sulfur oxidation process benefits the understanding of sulfur chemistry and provides a valuable inspiration for the design of other high-voltage metal-sulfur batteries, not limited to Al-S configurations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA