Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865443

RESUMO

Soil waterlogging and drought correspond to contrasting water extremes resulting in plant dehydration. Dehydration in response to waterlogging occurs due to impairments to root water transport, but no previous study has addressed whether limitations to water transport occur beyond this organ or whether dehydration alone can explain shoot impairments. Using common bean (Phaseolus vulgaris) as a model species, we report that waterlogging also impairs water transport in leaves and stems. During the very first hours of waterlogging, leaves transiently dehydrated to water potentials close to the turgor loss point, possibly driving rapid stomatal closure and partially explaining the decline in leaf hydraulic conductance. The initial decline in leaf hydraulic conductance (occurring within 24 h), however, surpassed the levels predicted to occur based solely on dehydration. Constraints to leaf water transport resulted in a hydraulic disconnection between leaves and stems, furthering leaf dehydration during waterlogging and after soil drainage. As leaves dehydrated later during waterlogging, leaf embolism initiated and extensive embolism levels amplified leaf damage. The hydraulic disconnection between leaves and stems prevented stem water potentials from declining below the threshold for critical embolism levels in response to waterlogging. This allowed plants to survive waterlogging and soil drainage. In summary, leaf and stem dehydration are central in defining plant impairments in response to waterlogging, thus creating similarities between waterlogging and drought. Yet, our findings point to the existence of additional players (likely chemicals) partially controlling the early declines in leaf hydraulic conductance and contributing to leaf damage during waterlogging.

2.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610546

RESUMO

The study of plant electrophysiology offers promising techniques to track plant health and stress in vivo for both agricultural and environmental monitoring applications. Use of superficial electrodes on the plant body to record surface potentials may provide new phenotyping insights. Bacterial nanocellulose (BNC) is a flexible, optically translucent, and water-vapor-permeable material with low manufacturing costs, making it an ideal substrate for non-invasive and non-destructive plant electrodes. This work presents BNC electrodes with screen-printed carbon (graphite) ink-based conductive traces and pads. It investigates the potential of these electrodes for plant surface electrophysiology measurements in comparison to commercially available standard wet gel and needle electrodes. The electrochemically active surface area and impedance of the BNC electrodes varied based on the annealing temperature and time over the ranges of 50 °C to 90 °C and 5 to 60 min, respectively. The water vapor transfer rate and optical transmittance of the BNC substrate were measured to estimate the level of occlusion caused by these surface electrodes on the plant tissue. The total reduction in chlorophyll content under the electrodes was measured after the electrodes were placed on maize leaves for up to 300 h, showing that the BNC caused only a 16% reduction. Maize leaf transpiration was reduced by only 20% under the BNC electrodes after 72 h compared to a 60% reduction under wet gel electrodes in 48 h. On three different model plants, BNC-carbon ink surface electrodes and standard invasive needle electrodes were shown to have a comparable signal quality, with a correlation coefficient of >0.9, when measuring surface biopotentials induced by acute environmental stressors. These are strong indications of the superior performance of the BNC substrate with screen-printed graphite ink as an electrode material for plant surface biopotential recordings.


Assuntos
Grafite , Agricultura , Transporte Biológico , Carbono , Clorofila , Vapor
3.
Plant Cell Environ ; 46(11): 3229-3241, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526514

RESUMO

Drought resistance is essential for plant production under water-limiting environments. Abscisic acid (ABA) plays a critical role in stomata but its impact on hydraulic function beyond the stomata is far less studied. We selected genotypes differing in their ability to accumulate ABA to investigate its role in drought-induced dysfunction. All genotypes exhibited similar leaf and stem embolism resistance regardless of differences in ABA levels. Their leaf hydraulic resistance was also similar. Differences were only observed between the two extreme genotypes: sitiens (sit; a strong ABA-deficient mutant) and sp12 (a transgenic line that constitutively overaccumulates ABA), where the water potential inducing 50% embolism was 0.25 MPa lower in sp12 than in sit. Maximum stomatal and minimum leaf conductances were considerably lower in plants with higher ABA (wild type [WT] and sp12) than in ABA-deficient mutants. Variations in gas exchange across genotypes were associated with ABA levels and differences in stomatal density and size. The lower water loss in plants with higher ABA meant that lethal water potentials associated with embolism occurred later during drought in sp12 plants, followed by WT, and then by the ABA-deficient mutants. Therefore, the primary pathway by which ABA enhances drought resistance is via declines in water loss, which delays dehydration and hydraulic dysfunction.

4.
J Radiol Prot ; 40(4): 1138-1153, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32964864

RESUMO

Numerous techniques and equipment have been developed to provide a capability for the detection of special nuclear materials (SNM), but due to the necessary security measures surrounding these materials alternate, or proxy, neutron sources are often utilised in their stead. In this paper we report the neutron and gamma pulse shape discrimination response of plastic scintillator to mixed neutron/gamma beams produced from two radionuclide neutron sources, and also from an SNM source of weapons-grade plutonium. We discuss the suitability of using radionuclide sources, with appropriate shielding configurations as proxy sources for SNM. A 3σnth-γ discrimination level has been achieved for an SNM source at a low-level energy threshold of ∼220 keVee when a shielding configuration of 5 cm of lead was implemented. Varying amounts of lead and high-density polyethylene (HDPE) shielding were also investigated with the 3σ limit being reached by ∼240 keVee. This work shows that an AmBe neutron source serves as an appropriate SNM proxy achieving a comparable value for figure of merit above ∼1 MeVee. For energies below 1 MeVee down to ∼100 keVee a closer approximation of the expected FoM for SNM can be attained when using 252Cf as a proxy source or by utilising an 'enhanced' AmBe source with the addition of a further low energy γ ray source.

5.
Plants (Basel) ; 8(7)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330762

RESUMO

Ozone (O3) is a phytotoxic air pollutant that limits crop productivity. Breeding efforts to improve yield under elevated O3 conditions will benefit from understanding the mechanisms that contribute to O3 tolerance. In this study, leaf gas exchange and antioxidant metabolites were compared in soybean genotypes (Glycine max (L.) Merr) differing in ozone sensitivity. Mandarin (Ottawa) (O3-sensitive) and Fiskeby III (O3-tolerant) plants grown under charcoal-filtered (CF) air conditions for three weeks were exposed for five days to either CF conditions or 70 ppb O3 in continuously stirred tank reactors (CSTRs) in a greenhouse. In the CF controls, stomatal conductance was approximately 36% lower for Fiskeby III relative to Mandarin (Ottawa) while the two genotypes exhibited similar levels of photosynthesis. Ozone exposure induced significant foliar injury on leaves of Mandarin (Ottawa) associated with declines in both stomatal conductance (by 77%) and photosynthesis (by 38%). In contrast, O3 exposure resulted in minimal foliar injury on leaves of Fiskeby III with only a small decline in photosynthesis (by 5%), and a further decline in stomatal conductance (by 30%). There was a general trend towards higher ascorbic acid content in leaves of Fiskeby III than in Mandarin (Ottawa) regardless of treatment. The results confirm Fiskeby III to be an O3-tolerant genotype and suggest that reduced stomatal conductance contributes to the observed O3 tolerance through limiting O3 uptake by the plant. Reduced stomatal conductance was associated with enhanced water-use efficiency, providing a potential link between O3 tolerance and drought tolerance.

6.
Lab Chip ; 16(9): 1605-16, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27044712

RESUMO

The ability to detect radiation in microfluidic devices is important for the on-chip analysis of radiopharmaceuticals, but previously reported systems have largely suffered from various limitations including cost, complexity of fabrication, and insufficient sensitivity and/or speed. Here, we present the use of sensitive, low cost, small-sized, commercially available silicon photomultipliers (SiPMs) for the detection of radioactivity inside microfluidic channels fabricated from a range of conventional microfluidic chip substrates. We demonstrate the effects of chip material and thickness on the detection of the positron-emitting isotope, [(18)F]fluoride, and find that, while the SiPMs are light sensors, they are able to detect radiation even through opaque chip materials via direct positron and gamma (γ) ray interaction. Finally, we employed the SiPM platform for analysis of the PET (positron emission tomography) radiotracers 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) and [(68)Ga]gallium-citrate, and highlight the ability to detect the γ ray emitting SPECT (single photon emission computed tomography) radiotracer, [(99m)Tc]pertechnetate.


Assuntos
Citratos/análise , Fluordesoxiglucose F18/análise , Gálio/análise , Dispositivos Lab-On-A-Chip , Compostos Radiofarmacêuticos/análise , Calibragem , Desenho de Equipamento , Estudos de Viabilidade , Radioisótopos de Flúor , Radioisótopos de Gálio , Meia-Vida , Humanos , Marcação por Isótopo , Tomografia por Emissão de Pósitrons , Impressão Tridimensional , Controle de Qualidade , Traçadores Radioativos , Silício/química , Pertecnetato Tc 99m de Sódio , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA