Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791993

RESUMO

When analyzing cancer sample genomes in clinical practice, many structural variants (SVs), other than single nucleotide variants (SNVs), have been identified. To identify driver variants, the leading candidates must be narrowed down. When fusion genes are involved, selection is particularly difficult, and highly accurate predictions from AI is important. Furthermore, we also wanted to determine how the prediction can make more reliable diagnoses. Here, we developed an explainable AI (XAI) suitable for SVs with gene fusions, based on the XAI technology we previously developed for the prediction of SNV pathogenicity. To cope with gene fusion variants, we added new data to the previous knowledge graph for SVs and we improved the algorithm. Its prediction accuracy was as high as that of existing tools. Moreover, our XAI could explain the reasons for these predictions. We used some variant examples to demonstrate that the reasons are plausible in terms of pathogenic basic mechanisms. These results can be seen as a hopeful step toward the future of genomic medicine, where efficient and correct decisions can be made with the support of AI.

2.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831459

RESUMO

BACKGROUND: To treat diseases caused by genetic variants, it is necessary to identify disease-causing variants in patients. However, since there are a large number of disease-causing variants, the application of AI is required. We propose AI to solve this problem and report the results of its application in identifying disease-causing variants. METHODS: To assist physicians in their task of identifying disease-causing variants, we propose an explainable AI (XAI) that combines high estimation accuracy with explainability using a knowledge graph. We integrated databases for genomic medicine and constructed a large knowledge graph that was used to achieve the XAI. RESULTS: We compared our XAI with random forests and decision trees. CONCLUSION: We propose an XAI that uses knowledge graphs for explanation. The proposed method achieves high estimation performance and explainability. This will support the promotion of genomic medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA