Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 152(17): 174111, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384832

RESUMO

We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, onetep is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange-correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with onetep provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. onetep has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.

2.
Nano Lett ; 17(4): 2454-2459, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28337920

RESUMO

One of the main advantages of nanowires for functional applications is their high perfection, which results from surface image forces that act on line defects such as dislocations, rendering them unstable and driving them out of the crystal. Here we show that there is a class of step facets that are stable in nanowires, with no long-range strain field or dislocation character. In zinc-blende semiconductors, they take the form of Σ3 (112) facets with heights constrained to be a multiple of three {111} monolayers. Density functional theory calculations show that they act as nonradiative recombination centers and have deleterious effects on nanowire properties. We present experimental observations of these defects on twin boundaries and twins that terminate inside GaAsP nanowires and find that they are indeed always multiples of three monolayers in height. Strategies to use the three-monolayer rule during growth to prevent their formation are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA