Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 36(11-12): 737-751, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798383

RESUMO

The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding ß-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Neoplasias Encefálicas/patologia , Ciclo Celular/genética , Neoplasias Cerebelares/genética , Cílios/genética , Humanos , Meduloblastoma/genética , Camundongos
2.
Cell ; 152(1-2): 25-38, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23273993

RESUMO

Cell-type plasticity within a tumor has recently been suggested to cause a bidirectional conversion between tumor-initiating stem cells and nonstem cells triggered by an inflammatory stroma. NF-κB represents a key transcription factor within the inflammatory tumor microenvironment. However, NF-κB's function in tumor-initiating cells has not been examined yet. Using a genetic model of intestinal epithelial cell (IEC)-restricted constitutive Wnt-activation, which comprises the most common event in the initiation of colon cancer, we demonstrate that NF-κB modulates Wnt signaling and show that IEC-specific ablation of RelA/p65 retards crypt stem cell expansion. In contrast, elevated NF-κB signaling enhances Wnt activation and induces dedifferentiation of nonstem cells that acquire tumor-initiating capacity. Thus, our data support the concept of bidirectional conversion and highlight the importance of inflammatory signaling for dedifferentiation and generation of tumor-initiating cells in vivo.


Assuntos
Desdiferenciação Celular , Transformação Celular Neoplásica , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/patologia , Animais , Colo/patologia , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Via de Sinalização Wnt
3.
Cell ; 147(5): 1146-58, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118468

RESUMO

Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-ß type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-ß/Smad signaling in HSC maintenance. TGF-ß is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-ß. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-ß-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-ß.


Assuntos
Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/citologia , Células de Schwann/citologia , Fator de Crescimento Transformador beta3/metabolismo , Animais , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Células de Schwann/fisiologia , Simpatectomia
4.
Genes Dev ; 29(14): 1493-506, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193883

RESUMO

Mutations in Adenomatous polyposis coli (APC) underlie familial adenomatous polyposis (FAP), an inherited cancer syndrome characterized by the widespread development of colorectal polyps. APC is best known as a scaffold protein in the ß-catenin destruction complex, whose activity is antagonized by canonical Wnt signaling. Whether other effector pathways mediate APC's tumor suppressor function is less clear. Here we report that activation of YAP, the downstream effector of the Hippo signaling pathway, is a general hallmark of tubular adenomas from FAP patients. We show that APC functions as a scaffold protein that facilitates the Hippo kinase cascade by interacting with Sav1 and Lats1. Consistent with the molecular link between APC and the Hippo signaling pathway, genetic analysis reveals that YAP is absolutely required for the development of APC-deficient adenomas. These findings establish Hippo-YAP signaling as a critical effector pathway downstream from APC, independent from its involvement in the ß-catenin destruction complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/fisiopatologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Adenoma/enzimologia , Adenoma/fisiopatologia , Polipose Adenomatosa do Colo/enzimologia , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Ciclo Celular , Células Cultivadas , Via de Sinalização Hippo , Humanos , Intestinos/fisiopatologia , Camundongos , Fatores de Transcrição , Proteínas de Sinalização YAP , beta Catenina/metabolismo
5.
FASEB J ; 35(11): e21957, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606641

RESUMO

The Wnt signaling antagonist, sclerostin, is a potent suppressor of bone acquisition that also mediates endocrine communication between bone and adipose. As a result, Sost-/- mice exhibit dramatic increases in bone formation but marked decreases in visceral and subcutaneous adipose that are secondary to alterations in lipid synthesis and utilization. While interrogating the mechanism by which sclerostin influences adipocyte metabolism, we observed paradoxical increases in the adipogenic potential and numbers of CD45- :Sca1+ :PDGFRα+ adipoprogenitors in the stromal vascular compartment of fat pads isolated from male Sost-/- mice. Lineage tracing studies indicated that sclerostin deficiency blocks the differentiation of PDGFRα+ adipoprogenitors to mature adipocytes in association with increased Wnt/ß-catenin signaling. Importantly, osteoblast/osteocyte-specific Sost gene deletion mirrors the accumulation of PDGFRα+ adipoprogenitors, reduction in fat mass, and improved glucose metabolism evident in Sost-/- mice. These data indicate that bone-derived sclerostin regulates multiple facets of adipocyte physiology ranging from progenitor cell commitment to anabolic metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Osso e Ossos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Técnicas de Inativação de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteogênese/genética
6.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217753

RESUMO

Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs.


Assuntos
Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Coração/embriologia , Células-Tronco Pluripotentes/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Embrião de Mamíferos/citologia , Células Endoteliais/citologia , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/citologia , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
7.
Kidney Int ; 93(6): 1367-1383, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29605095

RESUMO

Imbalance of Wnt/ß-catenin signaling in renal cells is associated with renal dysfunction, yet the precise mechanism is poorly understood. Previously we observed activated Wnt/ß-catenin signaling in renal tubules during proteinuric nephropathy with an unknown net effect. Therefore, to identify the definitive role of tubular Wnt/ß-catenin, we generated a novel transgenic "Tubcat" mouse conditionally expressing stabilized ß-catenin specifically in renal tubules following tamoxifen administration. Four weeks after tamoxifen injection, uninephrectomized Tubcat mice displayed proteinuria and elevated blood urea nitrogen levels compared to non-transgenic mice, implying a detrimental effect of the activated signaling. This was associated with infiltration of the tubulointerstitium predominantly by M1 macrophages and overexpression of the inflammatory chemocytokines CCL-2 and RANTES. Induction of overload proteinuria by intraperitoneal injection of low-endotoxin bovine serum albumin following uninephrectomy for four weeks aggravated proteinuria and increased blood urea nitrogen levels to a significantly greater extent in Tubcat mice. Renal dysfunction correlated with the degree of M1 macrophage infiltration in the tubulointerstitium and renal cortical up-regulation of CCL-2, IL-17A, IL-1ß, CXCL1, and ICAM-1. There was overexpression of cortical TLR-4 and NLRP-3 in Tubcat mice, independent of bovine serum albumin injection. Finally, there was no fibrosis, activation of epithelial-mesenchymal transition or non-canonical Wnt pathways observed in the kidneys of Tubcat mice. Thus, conditional activation of renal tubular Wnt/ß-catenin signaling in a novel transgenic mouse model demonstrates that this pathway enhances intrarenal inflammation via the TLR-4/NLRP-3 inflammasome axis in overload proteinuria.


Assuntos
Mediadores da Inflamação/metabolismo , Túbulos Renais/metabolismo , Macrófagos/metabolismo , Nefrite/metabolismo , Proteinúria/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrectomia , Nefrite/genética , Nefrite/patologia , Nefrite/fisiopatologia , Proteinúria/genética , Proteinúria/patologia , Proteinúria/fisiopatologia , Soroalbumina Bovina , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , Via de Sinalização Wnt/genética , beta Catenina/genética
8.
Proc Natl Acad Sci U S A ; 112(5): E478-86, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605937

RESUMO

Osteocytes, >90% of the cells in bone, lie embedded within the mineralized matrix and coordinate osteoclast and osteoblast activity on bone surfaces by mechanisms still unclear. Bone anabolic stimuli activate Wnt signaling, and human mutations of components along this pathway underscore its crucial role in bone accrual and maintenance. However, the cell responsible for orchestrating Wnt anabolic actions has remained elusive. We show herein that activation of canonical Wnt signaling exclusively in osteocytes [dominant active (da)ßcat(Ot) mice] induces bone anabolism and triggers Notch signaling without affecting survival. These features contrast with those of mice expressing the same daß-catenin in osteoblasts, which exhibit decreased resorption and perinatal death from leukemia. daßcat(Ot) mice exhibit increased bone mineral density in the axial and appendicular skeleton, and marked increase in bone volume in cancellous/trabecular and cortical compartments compared with littermate controls. daßcat(Ot) mice display increased resorption and formation markers, high number of osteoclasts and osteoblasts in cancellous and cortical bone, increased bone matrix production, and markedly elevated periosteal bone formation rate. Wnt and Notch signaling target genes, osteoblast and osteocyte markers, and proosteoclastogenic and antiosteoclastogenic cytokines are elevated in bones of daßcat(Ot) mice. Further, the increase in RANKL depends on Sost/sclerostin. Thus, activation of osteocytic ß-catenin signaling increases both osteoclasts and osteoblasts, leading to bone gain, and is sufficient to activate the Notch pathway. These findings demonstrate disparate outcomes of ß-catenin activation in osteocytes versus osteoblasts and identify osteocytes as central target cells of the anabolic actions of canonical Wnt/ß-catenin signaling in bone.


Assuntos
Osso e Ossos/metabolismo , Osteócitos/fisiologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Densidade Óssea , Camundongos , Camundongos Transgênicos
9.
Dev Biol ; 412(2): 234-49, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26934381

RESUMO

Organ shape and size are important determinants of their physiological functions. Epithelial tubes are anlagen of many complex organs. How these tubes acquire their complex shape and size is a fundamental question in biology. In male mice, the Wolffian duct (WD; postnatally known as epididymis) undergoes an astonishing transformation, where a straight tube only a few millimetres long elongates to over 1000 times its original length and fits into a very small space, due to extensive coiling of epithelium, to perform the highly specialized function of sperm maturation. Defective coiling disrupts sperm maturation and leads to male infertility. Recent work has shown that epithelial cell proliferation is a major driver of WD coiling. Still, very little is known about the molecular signals involved in this process. Testicular androgens are known regulators of WD development. However, epithelial androgen receptor signalling is dispensable for WD coiling. In this study, we have shown that Wnt signalling is highly active in the entire WD epithelium during its coiling, and is limited to only a few segments of the epididymis in later life. Pharmacological and genetic suppression of Wnt signalling inhibited WD coiling by decreasing cell proliferation and promoting apoptosis. Comparative gene expression analysis identified Fibroblast growth factor 7 (Fgf7) as a prime Wnt target gene involved in WD coiling and in vitro treatment with Fgf7 protein increased coiling of WDs. In summary, our work has established that epithelial canonical Wnt signalling is a critical regulator of WD coiling and its precise regulation is essential for WD/epididymal differentiation.


Assuntos
Epididimo/metabolismo , Epitélio/metabolismo , Via de Sinalização Wnt/genética , Ductos Mesonéfricos/metabolismo , Animais , Epididimo/embriologia , Epitélio/embriologia , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ductos Mesonéfricos/embriologia , beta Catenina/genética , beta Catenina/metabolismo
10.
Nature ; 468(7327): 1095-9, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21150899

RESUMO

Medulloblastoma encompasses a collection of clinically and molecularly diverse tumour subtypes that together comprise the most common malignant childhood brain tumour. These tumours are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) after aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumours infiltrate the dorsal brainstem, whereas SHH-subtype tumours are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem which included aberrantly proliferating Zic1(+) precursor cells. These lesions persisted in all mutant adult mice; moreover, in 15% of cases in which Tp53 was concurrently deleted, they progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence, to our knowledge, that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH- and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.


Assuntos
Tronco Encefálico/patologia , Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , beta Catenina/genética
11.
PLoS Genet ; 9(1): e1003180, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300485

RESUMO

Prostate cancer is a major cause of male death in the Western world, but few frequent genetic alterations that drive prostate cancer initiation and progression have been identified. ß-Catenin is essential for many developmental processes and has been implicated in tumorigenesis in many tissues, including prostate cancer. However, expression studies on human prostate cancer samples are unclear on the role this protein plays in this disease. We have used in vivo genetic studies in the embryo and adult to extend our understanding of the role of ß-Catenin in the normal and neoplastic prostate. Our gene deletion analysis revealed that prostate epithelial ß-Catenin is required for embryonic prostate growth and branching but is dispensable in the normal adult organ. During development, ß-Catenin controls the number of progenitors in the epithelial buds and regulates a discrete network of genes, including c-Myc and Nkx3.1. Deletion of ß-Catenin in a Pten deleted model of castration-resistant prostate cancer demonstrated it is dispensable for disease progression in this setting. Complementary overexpression experiments, through in vivo protein stabilization, showed that ß-Catenin promotes the formation of squamous epithelia during prostate development, even in the absence of androgens. ß-Catenin overexpression in combination with Pten loss was able to drive progression to invasive carcinoma together with squamous metaplasia. These studies demonstrate that ß-Catenin is essential for prostate development and that an inherent property of high levels of this protein in prostate epithelia is to drive squamous fate differentiation. In addition, they show that ß-Catenin overexpression can promote invasive prostate cancer in a clinically relevant model of this disease. These data provide novel information on cancer progression pathways that give rise to lethal prostate disease in humans.


Assuntos
Carcinoma , PTEN Fosfo-Hidrolase , Neoplasias da Próstata , beta Catenina , Animais , Carcinoma/metabolismo , Carcinoma/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Invasividade Neoplásica/patologia , Orquiectomia , Técnicas de Cultura de Órgãos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Próstata/crescimento & desenvolvimento , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , beta Catenina/genética , beta Catenina/metabolismo
12.
Nat Genet ; 39(4): 467-75, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369830

RESUMO

Inactivation of TGF-beta family signaling is implicated in colorectal tumor progression. Using cis-Apc(+/Delta716) Smad4(+/-) mutant mice (referred to as cis-Apc/Smad4), a model of invasive colorectal cancer in which TGF-beta family signaling is blocked, we show here that a new type of immature myeloid cell (iMC) is recruited from the bone marrow to the tumor invasion front. These CD34(+) iMCs express the matrix metalloproteinases MMP9 and MMP2 and the CC-chemokine receptor 1 (CCR1) and migrate toward the CCR1 ligand CCL9. In adenocarcinomas, expression of CCL9 is increased in the tumor epithelium. By deleting Ccr1 in the background of the cis-Apc/Smad4 mutant, we further show that lack of CCR1 prevents accumulation of CD34(+) iMCs at the invasion front and suppresses tumor invasion. These results indicate that loss of transforming growth factor-beta family signaling in tumor epithelium causes accumulation of iMCs that promote tumor invasion.


Assuntos
Carcinoma/genética , Movimento Celular/genética , Neoplasias Intestinais/genética , Células Mieloides/metabolismo , Receptores de Quimiocinas/metabolismo , Proteína Smad4/genética , Animais , Antígenos CD34/metabolismo , Carcinoma/patologia , Quimiocinas CC , Feminino , Neoplasias Intestinais/patologia , Proteínas Inflamatórias de Macrófagos/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Invasividade Neoplásica/genética , Receptores CCR1 , Receptores de Quimiocinas/genética , Células Estromais/metabolismo , Células Tumorais Cultivadas
13.
Nat Genet ; 39(1): 106-12, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17128274

RESUMO

Fungiform taste papillae form a regular array on the dorsal tongue. Taste buds arise from papilla epithelium and, unusually for epithelial derivatives, synapse with neurons, release neurotransmitters and generate receptor and action potentials. Despite the importance of taste as one of our five senses, genetic analyses of taste papilla and bud development are lacking. We demonstrate that Wnt-beta-catenin signaling is activated in developing fungiform placodes and taste bud cells. A dominant stabilizing mutation of epithelial beta-catenin causes massive overproduction of enlarged fungiform papillae and taste buds. Likewise, genetic deletion of epithelial beta-catenin or inhibition of Wnt-beta-catenin signaling by ectopic dickkopf1 (Dkk1) blocks initiation of fungiform papilla morphogenesis. Ectopic papillae are innervated in the stabilizing beta-catenin mutant, whereas ectopic Dkk1 causes absence of lingual epithelial innervation. Thus, Wnt-beta-catenin signaling is critical for fungiform papilla and taste bud development. Altered regulation of this pathway may underlie evolutionary changes in taste papilla patterning.


Assuntos
Papilas Gustativas/embriologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Transgênicos , Morfogênese/genética , Gravidez , Transdução de Sinais/genética , Papilas Gustativas/crescimento & desenvolvimento , beta Catenina/genética
14.
Carcinogenesis ; 36(7): 719-29, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939752

RESUMO

The forced reduction of global DNA methylation suppresses tumor development in several cancer models in vivo. Nevertheless, the mechanisms underlying these suppressive effects remain unclear. In this report, we describe our findings showing that a genome-wide reduction in the DNA methylation levels induces cellular differentiation in association with decreased cell proliferation in Apc (Min/+) mouse colon tumor cells in vivo. Colon tumor-specific DNA methylation at Cdx1 is reduced in the DNA-hypomethylated tumors accompanied by Cdx1 derepression and an increased expression of intestinal differentiation-related genes. Furthermore, a histological analysis revealed that Cdx1 derepression in the DNA-hypomethylated tumors is correlated with the differentiation of colon tumor cells. Similarly, the treatment of human colon cancer cell lines with a hypomethylating agent induces differentiation-related genes, including CDX1. We herein propose that DNA demethylation exerts a tumor suppressive effect in the colon by inducing tumor cell differentiation.


Assuntos
Diferenciação Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Metilação de DNA , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Fator de Transcrição CDX2 , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Análise Serial de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Development ; 139(10): 1821-30, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22461561

RESUMO

Outgrowth and fusion of the lateral and medial nasal processes and of the maxillary process of the first branchial arch are integral to lip and primary palate development. Wnt9b mutations are associated with cleft lip and cleft palate in mice; however, the cause of these defects remains unknown. Here, we report that Wnt9b(-/-) mice show significantly retarded outgrowth of the nasal and maxillary processes due to reduced proliferation of mesenchymal cells, which subsequently results in a failure of physical contact between the facial processes that leads to cleft lip and cleft palate. These cellular defects in Wnt9b(-/-) mice are mainly caused by reduced FGF family gene expression and FGF signaling activity resulting from compromised canonical WNT/ß-catenin signaling. Our study has identified a previously unknown regulatory link between WNT9B and FGF signaling during lip and upper jaw development.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Arcada Osseodentária/metabolismo , Lábio/metabolismo , Mucosa Nasal/metabolismo , Proteínas Wnt/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Fenda Labial/genética , Fenda Labial/metabolismo , Fissura Palatina/genética , Fissura Palatina/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Hibridização In Situ , Arcada Osseodentária/embriologia , Lábio/embriologia , Maxila/embriologia , Maxila/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Nariz/embriologia , Técnicas de Cultura de Órgãos , Palato/embriologia , Palato/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Wnt/genética , beta Catenina/metabolismo
16.
Development ; 139(15): 2692-702, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22745311

RESUMO

Neural progenitor cells within the developing thalamus are spatially organized into distinct populations. Their correct specification is critical for generating appropriate neuronal subtypes in specific locations during development. Secreted signaling molecules, such as sonic hedgehog (Shh) and Wnts, are required for the initial formation of the thalamic primordium. Once thalamic identity is established and neurogenesis is initiated, Shh regulates the positional identity of thalamic progenitor cells. Although Wnt/ß-catenin signaling also has differential activity within the thalamus during this stage of development, its significance has not been directly addressed. In this study, we used conditional gene manipulations in mice and explored the roles of ß-catenin signaling in the regional identity of thalamic progenitor cells. We found ß-catenin is required during thalamic neurogenesis to maintain thalamic fate while suppressing prethalamic fate, demonstrating that regulation of regional fate continues to require extrinsic signals. These roles of ß-catenin appeared to be mediated at least partly by regulating two basic helix-loop-helix (bHLH) transcription factors, Neurog1 and Neurog2. ß-Catenin and Shh signaling function in parallel to specify two progenitor domains within the thalamus, where individual transcription factors expressed in each progenitor domain were regulated differently by the two signaling pathways. We conclude that ß-catenin has multiple functions during thalamic neurogenesis and that both Shh and ß-catenin pathways are important for specifying distinct types of thalamic progenitor cells, ensuring that the appropriate neuronal subtypes are generated in the correct locations.


Assuntos
Proteínas Hedgehog/metabolismo , Células-Tronco/citologia , Tálamo/citologia , Tálamo/embriologia , beta Catenina/metabolismo , Alelos , Animais , Linhagem da Célula , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Mutação , Neurogênese , Fenótipo
17.
Development ; 139(10): 1724-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22461560

RESUMO

The WNT pathway plays multiple roles in neural development and is crucial for establishment of the embryonic cerebellum. In addition, WNT pathway mutations are associated with medulloblastoma, the most common malignant brain tumor in children. However, the cell types within the cerebellum that are responsive to WNT signaling remain unknown. Here we investigate the effects of canonical WNT signaling on two important classes of progenitors in the developing cerebellum: multipotent neural stem cells (NSCs) and granule neuron precursors (GNPs). We show that WNT pathway activation in vitro promotes proliferation of NSCs but not GNPs. Moreover, mice that express activated ß-catenin in the cerebellar ventricular zone exhibit increased proliferation of NSCs in that region, whereas expression of the same protein in GNPs impairs proliferation. Although ß-catenin-expressing NSCs proliferate they do not undergo prolonged expansion or neoplastic growth; rather, WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level, mutant NSCs exhibit increased expression of c-Myc, which might account for their transient proliferation, but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21, which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation.


Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Cerebelo/embriologia , Citometria de Fluxo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
18.
Proc Natl Acad Sci U S A ; 109(21): 8167-72, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22562792

RESUMO

Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic, but it harbors cells that can behave as progenitor cells in vitro, including the ability to form new hair cells. Lgr5, a Wnt target gene, marks distinct supporting cell types in the neonatal cochlea. Here, we tested the hypothesis that Lgr5(+) cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior, Lgr5(+) cells isolated by flow cytometry from neonatal Lgr5(EGFP-CreERT2/+) mice proliferated and formed clonal colonies. After 10 d in culture, new sensory cells formed and displayed specific hair cell markers (myo7a, calretinin, parvalbumin, myo6) and stereocilia-like structures expressing F-actin and espin. In comparison with other supporting cells, Lgr5(+) cells were enriched precursors to myo7a(+) cells, most of which formed without mitotic division. Treatment with Wnt agonists increased proliferation and colony-formation capacity. Conversely, small-molecule inhibitors of Wnt signaling suppressed proliferation without compromising the myo7a(+) cells formed by direct differentiation. In vivo lineage tracing supported the idea that Lgr5(+) cells give rise to myo7a(+) hair cells in the neonatal Lgr5(EGFP-CreERT2/+) cochlea. In addition, overexpression of ß-catenin initiated proliferation and led to transient expansion of Lgr5(+) cells within the cochlear sensory epithelium. These results suggest that Lgr5 marks sensory precursors and that Wnt signaling can promote their proliferation and provide mechanistic insights into Wnt-responsive progenitor cells during sensory organ development.


Assuntos
Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Células Ciliadas Auditivas Internas/metabolismo , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Células Ciliadas Auditivas Internas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/fisiologia , Células-Tronco/citologia
19.
Dev Biol ; 376(2): 125-35, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23396188

RESUMO

Fetal prostate development is initiated by androgens and patterned by androgen dependent and independent signals. How these signals integrate to control epithelial cell differentiation and prostatic bud patterning is not fully understood. To test the role of beta-catenin (Ctnnb1) in this process, we used a genetic approach to conditionally delete or stabilize Ctnnb1 in urogenital sinus (UGS) epithelium from which the prostate derives. Two opposing mechanisms of action were revealed. By deleting Ctnnb1, we found it is required for separation of UGS from cloaca, emergence or maintenance of differentiated UGS basal epithelium and formation of prostatic buds. By genetically inducing a patchy subset of UGS epithelial cells to express excess CTNNB1, we found its excess abundance increases Bmp expression and leads to a global impairment of prostatic bud formation. Addition of NOGGIN partially restores prostatic budding in UGS explants with excess Ctnnb1. These results indicate a requirement for Ctnnb1 in UGS basal epithelial cell differentiation, prostatic bud initiation and bud spacing and suggest some of these actions are mediated in part through activation of BMP signaling.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , beta Catenina/biossíntese , Animais , Padronização Corporal , Diferenciação Celular , Cruzamentos Genéticos , Células Epiteliais/citologia , Deleção de Genes , Masculino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Modelos Genéticos , Próstata/embriologia , Transdução de Sinais
20.
J Pathol ; 231(2): 210-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23784889

RESUMO

Adenomyosis is defined by the presence of endometrial glands and stroma within the myometrium. Despite its frequent occurrence, the precise aetiology and physiopathology of adenomyosis is still unknown. WNT/ß-catenin signalling molecules are important and should be tightly regulated for uterine function. To investigate the role of ß-catenin signalling in adenomyosis, the expression of ß-catenin was examined. Nuclear and cytoplasmic ß-catenin expression was significantly higher in epithelial cells of human adenomyosis compared to control endometrium. To determine whether constitutive activation of ß-catenin in the murine uterus leads to development of adenomyosis, mice that expressed a dominant stabilized ß-catenin in the uterus were used by crossing PR-Cre mice with Ctnnb1(f(ex3)/+) mice. Uteri of PR(cre) (/+) Ctnnb1(f(ex3)/+) mice displayed an abnormal irregular structure and highly active proliferation in the myometrium, and subsequently developed adenomyosis. Interestingly, the expression of E-cadherin was repressed in epithelial cells of PR(cre) (/+) Ctnnb1(f(ex3)/+) mice compared to control mice. Repression of E-cadherin is one of the hallmarks of epithelial-mesenchymal transition (EMT). The expression of SNAIL and ZEB1 was observed in some epithelial cells of the uterus in PR(cre) (/+) Ctnnb1(f(ex3)/+) mice but not in control mice. Vimentin and COUP-TFII, mesenchymal cell markers, were expressed in some epithelial cells of PR(cre) (/+) Ctnnb1(f(ex3)/+) mice. In human adenomyosis, the expression of E-cadherin was decreased in epithelial cells compared to control endometrium, while CD10, an endometrial stromal marker, was expressed in some epithelial cells of human adenomyosis. These results suggest that abnormal activation of ß-catenin contributes to adenomyosis development through the induction of EMT.


Assuntos
Adenomiose/metabolismo , Adenomiose/patologia , Transição Epitelial-Mesenquimal/fisiologia , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Animais , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Mutantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA