Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta Med ; 87(12-13): 1080-1088, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34412145

RESUMO

Many species from the genus Citrus are used in traditional medicine and contain polymethoxylated flavonoids. These compounds show anti-inflammatory and chemopreventive activities, among others, and therefore have a big potential to be developed as therapeutic agents or dietary supplements. Citrus species are different in their profile and yield of polymethoxylated flavonoids. Therefore, polymethoxylated flavonoids were identified and quantified in seven different Citrus species, including wild-type and commercially available species. All species were profiled using UPLC-QTOF-MS/MS analysis combined with mass spectral molecular networking. A total of 38 polymethoxylated flavonoids were detected and 8 of them were present in every species. As the yield of polymethoxylated flavonoids was different for each species, a generally applicable HPLC-diode array detection method was developed and validated according to the ICH guidelines to quantify the amount of nobiletin and the total amount of polymethoxylated flavonoids expressed as nobiletin. Analysis of the seven samples showed evidence that wild-type Citrus species (e.g., Citrus depressa) contain higher yields of polymethoxylated flavonoids compared to commercially available species (e.g., Citrus limon). Qualitative analysis revealed the broadest variety of different PMFs in C. depressa, Citrus reticulata, and Citrus reticulata × Citrus sinensis, which makes them interesting sources of polymethoxylated flavonoids for future development as therapeutic agents or dietary supplements.


Assuntos
Citrus , Flavonoides , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão , Citrus/química , Flavonoides/análise , Espectrometria de Massas em Tandem
2.
RSC Adv ; 12(21): 13074-13086, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35497006

RESUMO

This work is devoted to the synthesis and study of the different properties of ZnO nanoparticles (NPs) doped with the Ni element. We have used a simple co-precipitation technique for the synthesis of our samples and various structural, morphological and optical techniques for their analysis. Energy-Dispersive X-ray spectroscopy (EDX) confirms the stoichiometry of the samples. The X-Ray Diffraction (XRD) patterns reveal the hexagonal wurtzite phase of polycrystalline ZnO with a P63mc space group. Debye Scherrer and Williamson-Hall methods show that the average size of crystallites is around 40 nm. Transmission electron microscopy (TEM) images confirm the XRD results. The optical spectrum of Zn0.95Ni0.5O shows the presence of near-band-edge (NBE) ultraviolet emission. The absorption defect bands appearing near the blue-green region and near infrared emission are attributed to the Ni2+ intra-3d luminescence. The electronic structure of the Ni2+ doped ZnO NPs confirms the T d site symmetry of Ni2+ in the ZnO host crystal and leads to a perfect correlation between calculated and experimental energy levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA