Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11979-11991, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571033

RESUMO

This work presents a model for the simulation of transverse mode instability (TMI) in rare earth doped optical fiber amplifiers. The model evaluates the internal temperature of a fiber using a superposition of a finite number of thermal eigenmodes. This simplification greatly enhances the speed of calculation with negligible impact on calculation accuracy. This new method is described and quantitatively compared to an older model that uses standard, spatially resolved FDTD to integrate the heat diffusion equation. When tested over a range of spatial and temporal resolutions, this model reduces runtime by a factor of ∼13.9 on average relative to identical simulations using the spatially resolved model.

2.
J Opt Soc Am A Opt Image Sci Vis ; 38(7): 1041-1050, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263760

RESUMO

The scattered light distribution of surfaces in the long-wave infrared (λ∼8-12µm) is measured using a small set of thermal camera images. This method can extract scatter patterns considerably faster than standard laboratory bidirectional reflectance distribution function measurements and is appropriate for passive homogeneous surfaces. Specifically, six images are used in this study, each taken with respect to a thermal light source at an angle ranging from 10° to 60° to the normal of the surface. This data is deconvolved with the shape of the light source to estimate the scattering pattern. Both highly specular (black Masonite) and diffuse (painted drywall) surfaces are tested. Errors between the estimated scattering distribution and a directly measured one using a goniometer stage and quantum-cascade laser (QCL) are less than or equal to 3% except for extremely specular surfaces where viable QCL measurements cannot be made due to the increased relative contribution of speckle noise.

3.
Appl Opt ; 60(19): 5488-5495, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263835

RESUMO

An aberrated wavefront incident upon an optical resonator will excite higher order spatial modes in the cavity, and the spectral width and distribution of these modes are indicative of the type and magnitude of the aberration. We apply this concept to atmospheric turbulence modeled by the Kolmogorov distribution. The spectral widths of the cavity transmission spectra are demonstrated via simulations to correspond to the structure constant that characterizes the variation in the optical index of refraction and thus the turbulence strength. Such a relationship can be harnessed to build a sensor for simply and quickly assessing optical turbulence strength.

4.
Opt Express ; 28(4): 5448-5458, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121765

RESUMO

High quality factor (Q) photonic devices in the room temperature thermal infrared region, corresponding to deeper long-wave infrared with wavelengths beyond 9 microns, have been demonstrated for the first time. Whispering gallery mode diamond microresonators were fabricated using single crystal diamond substrates and oxygen-based inductively coupled plasma (ICP) reactive ion etching (RIE) at high angles. The spectral characteristics of the devices were probed at room temperature using a tunable quantum cascade laser that was free space-coupled into the resonators. Light was extracted via an arsenic selenide (As2Se3) chalcogenide infrared fiber and directed to a cryogenically cooled mercury cadmium telluride (HgCdTe) detector. The quality factors were tested in multiple microresonators across a wide spectral range from 9 to 9.7 microns with similar performance. One example resonance (of many comparables) was found to reach 3648 at 9.601 µm. Fourier analysis of the many resonances of each device showed free spectral ranges slightly greater than 40 GHz, matching theoretical expectations for the microresonator diameter and the overlap of the whispering gallery mode with the diamond.

5.
Appl Opt ; 59(11): 3494-3497, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400464

RESUMO

Germanium is one of the most commonly used materials in the longwave infrared ($\lambda \sim{8 {-} 12}\;\unicode{x00B5}{\rm m}$λ∼8-12µm), but ironically, its absorption coefficient is poorly known in this range. An infrared photothermal common-path interferometry system with a tunable quantum cascade pump laser is used to measure the absorption coefficient of ${ \gt }{99.999}\% $>99.999% pure undoped germanium as a function of wavelengths between 9 and 11 µm, varying between about 0.15 and ${0.45}\;{{\rm cm}^{ - 1}}$0.45cm-1 over this range.

6.
Appl Opt ; 58(16): 4288-4299, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251232

RESUMO

It is shown that an aberrated wavefront incident upon a Fabry-Perot optical cavity excites higher order spatial modes in the cavity and that the spectral width and distribution of these modes is indicative of the type and magnitude of the aberration. The cavities are purely passive, and therefore frequency content is limited to that provided by the original light source. To illustrate this concept, spatial mode decomposition and transmission spectrum calculation are simulated on an example cavity; the effects of various phase delays, in the form of two basic Seidel aberrations and a composite of Zernike polynomial terms, are shown using both Laguerre-Gaussian and plane wave incident beams. The aggregate spectral width of the cavity modes excited by the aberrations is seen to widen as the magnitude of the aberrations' phase delay increases.

7.
Opt Express ; 26(6): 6639-6652, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609351

RESUMO

A Yb-doped fiber laser is used to accelerate and evaporate absorbing particles in air. Optical intensities of 1MW/cm2 and 2MW/cm2 illuminate stainless steel particles. These particles are accelerated to velocities of tens of meters per second before evaporating within a few tenths of a millisecond. Position measurements are made using direct imaging with a high-speed camera. A fundamental system of coupled differential equations to track particle momentum, velocity, mass, radius, temperature, vapor opacity, and temperature distribution is developed and shown to accurately model the trajectories and lifetimes of laser heated particles. Atoms evaporating from the particle impart momentum to the larger particle, which accelerates until it is slowed by drag forces. Heat transfer within the evaporating particles is dominated by radiation diffusion, a process that usually only dominates in astrophysical objects, for example in the photospheres of stars.

8.
Opt Lett ; 41(14): 3189-92, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420492

RESUMO

A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.

9.
Appl Opt ; 55(4): 796-801, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836082

RESUMO

Spatial modulation spectroscopy (SMS) is a powerful method for interrogating single nanoparticles. In these experiments optical extinction is measured by moving the particle in and out of a tightly focused laser beam. SMS is typically used for particles that are much smaller than the laser spot size. In this paper, we extend the analysis of the SMS signal to particles with sizes comparable to or larger than the laser spot, where the shape of the particle matters. These results are important for the analysis of polydisperse samples that have a wide range of sizes. The presented example images and analysis of a carbon microparticle sample show the utility of the derived expressions. In particular, we show that SMS can be used to generate extinction cross-section information about micrometer-sized particles with complex shapes.

10.
Appl Opt ; 54(30): 9010-6, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26560391

RESUMO

Thermal effects in optical substrates are vitally important in determining laser damage resistance in long-pulse and continuous-wave laser systems. Thermal deformation waves in a soda-lime-silica glass substrate have been measured using high-speed interferometry during a series of laser pulses incident on the surface. Two-dimensional images of the thermal waves were captured at a rate of up to six frames per thermal event using a quantitative phase measurement method. The system comprised a Mach-Zehnder interferometer, along with a high-speed camera capable of up to 20,000 frames-per-second. The sample was placed in the interferometer and irradiated with 100 ns, 2 kHz Q-switched pulses from a high-power Nd:YAG laser operating at 1064 nm. Phase measurements were converted to temperature using known values of thermal expansion and temperature-dependent refractive index for glass. The thermal decay at the center of the thermal wave was fit to a function derived from first principles with excellent agreement. Additionally, the spread of the thermal distribution over time was fit to the same function. Both the temporal decay fit and the spatial fit produced a thermal diffusivity of 5×10-7 m2/s.

11.
Appl Opt ; 54(16): 5216-22, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26192686

RESUMO

This paper describes the physical processes that occur when high-power continuous-wave laser light interacts with absorbing particles on a low-absorption optical surface. When a particulate-contaminated surface is illuminated by high-power continuous-wave laser light, a short burst of light is emitted from the surface, and the particles rapidly heat over a period of milliseconds to thousands of degrees Celsius, migrating over and evaporating from the surface. The surviving particles tend to coalesce into larger ones and leave a relatively flat residue on the surface. The total volume of the material on the surface has decreased dramatically. The optical surface itself heats substantially during illumination, but the surface temperature can decrease as the material is evaporated. Optical surfaces that survive this process without catastrophic damage are found to be more resistant to laser damage than surfaces that have not undergone the process. The surface temperature of the conditioned surfaces under illumination is lower than that of unconditioned surfaces. These conditioning effects on particles occurred within the first 30 s of laser exposure, with subsequent laser shots not affecting particle distributions. High-speed photography showed the actual removal and agglomeration of individual particles to occur within about 0.7 ms. Elemental changes were measured using time-of-flight secondary ion mass spectroscopy, with conditioned residuals being higher in hydrocarbon content than pristine particles. The tests in this study were conducted on high-reflectivity distributed Bragg reflector coated optics with carbon microparticles in the size range of 20-50 µm, gold particles of size 250 nm, and silica 1 µm in size.

12.
Opt Lett ; 38(21): 4292-5, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24177076

RESUMO

The laser-damage thresholds of single material and nanolaminate thin films were compared under continuous-wave (CW) illumination conditions. Nanolaminate films consist of uniform material interrupted by the periodic insertion of one or more atomic layers of an alternative material. Hafnia and titania were used as the base materials, and the films were deposited using atomic-layer deposition. The nanolaminates were less polycrystalline than the uniform films, as quantified using x-ray diffraction. It was found that the nanolaminate films had reduced laser-damage thresholds on smooth and patterned substrates as compared to uniform single-material films. This behavior is unusual as prior art indicates that amorphous (less polycrystalline) materials have higher laser-damage thresholds under short-pulse excitation. It is speculated that this may indicate that local thermal conduction affects breakdown more strongly under CW excitation than the dielectric properties that are important for short-pulse excitation.

13.
Opt Express ; 20 Suppl 4: A554-9, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22828624

RESUMO

The optimum transition wavelength between high absorption and low emissivity for selective solar absorbers has been calculated in several prior treatises for an ideal system, where the emissivity is exactly zero in the infrared. However, no real coating can achieve such a low emissivity across the entire infrared with simultaneously high absorption in the visible. An emissivity of even a few percent radically changes the optimum wavelength separating the high and low absorption spectral bands. This behavior is described and calculated for AM0 and AM1.5 solar spectra with an infrared emissivity varying between 0 and 5%. With an emissivity of 5%, solar concentration of 10 times the AM1.5 spectrum the optimum transition wavelength is found to be 1.28 µm and have a 957K equilibrium temperature. To demonstrate typical absorptions in optimized solar selective coatings, a four-layer sputtered Mo and SiO2 coating with absorption of 5% across the infrared is described experimentally and theoretically.

14.
Opt Express ; 18(3): 3109-15, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174144

RESUMO

Strong correlations have been found in the polarization of light transmitted through a polycrystalline material and the grain sizes and orientations of that material. Experiments and supporting simulations with irregularly shaped single quartz crystals show that linear polarization is lost more rapidly as grain sizes decrease and the angular spread of the crystal orientations increase. A quantitative method using Stokes matrices to predict such changes is described and experimentally verified using an apparatus to vary the orientation of irregular quartz crystals. Grain sizes are varied between 1mm and 4mm, and the angular spreads in the crystal orientation are varied between 9 degrees and 27 degrees . This technique has applications to identify changes in crystal structure of transparent uniaxial polycrystalline materials, especially in the nondestructive characterization of glacial ice.

15.
Opt Express ; 18(22): 22833-41, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21164622

RESUMO

The performance of thermal detectors is derived for devices incorporating materials with non-uniform spectral absorption. A detector designed to have low absorption in the primary thermal emission band at a given temperature will have a background-limited radiation noise well below that of a blackbody absorber, which is the condition typically assessed for ultimate thermal detector performance. Specific examples of mid-wave infrared (ʎ ∼ 3-5 µm) devices are described using lead selenide as a primary absorber with optical cavity layers that maximize coupling. An analysis of all significant noise sources is presented for two example room-temperature devices designed to have detectivities up to 4.37 × 10(10) cm Hz(1/2) W(-1), which is a factor 3.1 greater than the traditional blackbody limit. An alternative method of fabricating spectrally selective devices by patterning a plasmonic structure in silver is also considered.

16.
Appl Opt ; 49(8): 1242-8, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20220879

RESUMO

High-aspect-ratio channels may be coated using atomic layer deposition (ALD) due to the unique self-limiting nature of the process, and this has been often demonstrated using deep reactive-ion etched trenches in silicon. However, for optical and microfluidic applications, many channels are centimeters deep with diameters of tens to hundreds of micrometers, and the relatively large area exposes more difficult problems of temperature and gas flow uniformity. To quantify the uniformity of optical coatings deposited by ALD under those conditions, an air wedge has been created between two square wafers of silicon approximately 7 cm on a side, with the air gap varying linearly from 0-1560 microm. ALD aluminum oxide uniformity is astounding, while hafnium oxide shows a need for process optimization, but still exceeds the capability observed in other deposition techniques. A six-layer Fabry-Perot optical cavity with fixed 500 nm resonance was deposited inside a wedge, and the measured resonant wavelength closely matched predictions, except at the deepest regions of the wedge.

17.
J Phys Condens Matter ; 31(33): 335703, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31051485

RESUMO

This paper presents a theoretical and experimental investigation of photon diffusion in highly absorbing microscale graphite. A Nd:YAG continuous wave laser is used to heat the graphite samples with thicknesses of 40 µm and 100 µm. Optical intensities of 10 kW cm-2 and 20 kW cm-2 are used in the laser heating. The graphite samples are heated to temperatures of thousands of kelvins within milliseconds, which are recorded by a 2-color, high speed pyrometer. To compare the observed temperatures, differential equation of heat conduction is solved across the samples with proper initial and boundary conditions. In addition to lattice vibrations, photon diffusion is incorporated in the analytical model of thermal conductivity for solving the heat equation. The numerical simulations showed close matching between experiment and theory only when including the photon diffusion equations and existing material properties data found in the previously published works with no fitting constants. The results indicate that the commonly-overlooked mechanism of photon diffusion dominates the heat transfer of many microscale structures near their evaporation temperatures. In addition, the treatment explains the discrepancies between thermal conductivity measurements and theory that were previously described in the scientific literature.

18.
Sci Rep ; 9(1): 635, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679675

RESUMO

Laser-Induced optical breakdown often occurs unexpectedly at optical intensities far lower than those predicted by ultra-short pulse laser experiments, and is usually attributed to contamination. To determine the physical mechanism, optical coatings were contaminated with carbon and steel microparticles and stressed using a 17 kW continuous-wave laser. Breakdown occurred at intensity levels many orders of magnitude lower than expected in clean, pristine materials. Damage thresholds were found to strongly follow the bandgap energy of the film. A thermal model incorporating the particle absorption, interface heat transfer, and free carrier absorption was developed, and it explains the observed data, indicating that surface contamination heated by the laser thermally generates free carriers in the films. The observed bandgap dependence is in direct contrast to the behavior observed for clean samples under continuous wave and long-pulse illumination, and, unexpectedly, has similarities to ultra-short pulse breakdown for clean samples, albeit with a substantially different physical mechanism.

19.
Opt Express ; 15(24): 16285-91, 2007 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19550917

RESUMO

Thin films composed of SiO(2) nanorods or nanoporous SiO(2) (np- SiO(2)) are attractive for use as a low refractive index material in various types of optical coatings. However, the material properties of these films are unstable because of the high porosity of the films. This is particularly apparent in dry versus humid atmospheres where both the refractive index and coefficient of thermal expansion (CTE) vary dramatically. In this article, we demonstrate that np-SiO(2) can be encapsulated by depositing Al(2)O(3) with Atomic Layer Deposition (ALD), stabilizing these properties. In addition, this encapsulation ability is demonstrated successfully in a 4-pair distributed Bragg reflector (DBR) design. It is hoped that this technique will be useful in patterning specific regions of a film for optical and mechanical stability while other portions are ambient-interactive for sensing.

20.
Microsyst Nanoeng ; 2: 16037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31057831

RESUMO

While there are innumerable devices that measure temperature, the nonvolatile measurement of thermal history is far more difficult, particularly for sensors embedded in extreme environments such as fires and explosions. In this review, an extensive analysis is given of one such technology: thermoluminescent microparticles. These are transparent dielectrics with a large distribution of trap states that can store charge carriers over very long periods of time. In their simplest form, the population of these traps is dictated by an Arrhenius expression, which is highly dependent on temperature. A particle with filled traps that is exposed to high temperatures over a short period of time will preferentially lose carriers in shallow traps. This depopulation leaves a signature on the particle luminescence, which can be used to determine the temperature and time of the thermal event. Particles are prepared-many months in advance of a test, if desired-by exposure to deep ultraviolet, X-ray, beta, or gamma radiation, which fills the traps with charge carriers. Luminescence can be extracted from one or more particles regardless of whether or not they are embedded in debris or other inert materials. Testing and analysis of the method is demonstrated using laboratory experiments with microheaters and high energy explosives in the field. It is shown that the thermoluminescent materials LiF:Mg,Ti, MgB4O7:Dy,Li, and CaSO4:Ce,Tb, among others, provide accurate measurements of temperature in the 200 to 500 °C range in a variety of high-explosive environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA