Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(30): 13673-13687, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857885

RESUMO

Photoelectrochemical fuel generation is a promising route to sustainable liquid fuels produced from water and captured carbon dioxide with sunlight as the energy input. Development of these technologies requires photoelectrode materials that are both photocatalytically active and operationally stable in harsh oxidative and/or reductive electrochemical environments. Such photocatalysts can be discovered based on co-design principles, wherein design for stability is based on the propensity for the photocatalyst to self-passivate under operating conditions and design for photoactivity is based on the ability to integrate the photocatalyst with established semiconductor substrates. Here, we report on the synthesis and characterization of zinc titanium nitride (ZnTiN2) that follows these design rules by having a wurtzite-derived crystal structure and showing self-passivating surface oxides created by electrochemical polarization. The sputtered ZnTiN2 thin films have optical absorption onsets below 2 eV and n-type electrical conduction of 3 S/cm. The band gap of this material is reduced from the 3.36 eV theoretical value by cation-site disorder, and the impact of cation antisites on the band structure of ZnTiN2 is explored using density functional theory. Under electrochemical polarization, the ZnTiN2 surfaces have TiO2- or ZnO-like character, consistent with Materials Project Pourbaix calculations predicting the formation of stable solid phases under near-neutral pH. These results show that ZnTiN2 is a promising candidate for photoelectrochemical liquid fuel generation and demonstrate a new materials design approach to other photoelectrodes with self-passivating native operational surface chemistry.

2.
Chem Mater ; 34(15): 6883-6893, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35965892

RESUMO

Nitride perovskites have only been experimentally realized in very few cases despite the widespread existence and commercial importance of perovskite materials. From oxide perovskites used in ultrasonics to halide perovskites that have revolutionized the photovoltaics industry, the discovery of new perovskite materials has historically impacted a wide number of fields. Here, we add two new perovskites, CeWN3 and CeMoN3, to the list of experimentally realized perovskite nitrides using high-throughput computational screening and subsequent high-throughput thin film growth techniques. Candidate compositions are first down-selected using a tolerance factor and then thermochemical stability. A novel competing fluorite-family phase is identified for both material systems, which we hypothesize is a transient intermediate phase that crystallizes during the evolution from an amorphous material to a stable perovskite. Different processing routes to overcome the competing fluorite phase and obtain phase-pure nitride perovskites are demonstrated for the CeMoN3-x and CeWN3-x material systems, which provide a starting point for the development of future nitride perovskites. Additionally, we find that these new perovskite phases have interesting low-temperature magnetic behavior: CeMoN3-x orders antiferromagnetically below T N ≈ 8 K with indications of strong magnetic frustration, while CeWN3-x exhibits no long-range order down to T = 2 K but has strong antiferromagnetic correlations. This work demonstrates the importance and effectiveness of using high-throughput techniques, both computational and experimental: they are integral to optimize the process of realizing two entirely novel nitride perovskites.

3.
Rev Sci Instrum ; 92(6): 065105, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243552

RESUMO

We demonstrate an instrument for spatially resolved measurements (mapping) of electrochemical impedance under various temperatures and gas environments. Automated measurements are controlled by a custom LabVIEW program, which manages probe motion, sample motion, temperature ramps, and potentiostat functions. Sample and probe positioning is provided by stepper motors. Dry or hydrated atmospheres (air or nitrogen) are available. The configurable heater reaches temperatures up to 500 °C, although the temperature at the sample surface is moderated by the gas flow rate. The local gas environment is controlled by directing flow toward the sample via a glass enclosure that surrounds the gold wire probe. Software and hardware selection and design are discussed. Reproducibility and accuracy are quantified on a Ba(Zr,Y)O3-δ proton-conducting electrolyte thin film synthesized by pulsed laser deposition. The mapping feature of the instrument is demonstrated on a compositionally graded array of electrocatalytically active Ba(Co,Fe,Zr,Y)O3-δ thin film microelectrodes. The resulting data indicate that this method proficiently maps property trends in these materials, thus demonstrating the reliability and usefulness of this method for investigating electrochemically active thin films.

4.
Science ; 374(6574): 1488-1491, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914511

RESUMO

Oxide materials with the perovskite structure have been used in sensors and actuators for half a century, and halide perovskites transformed photovoltaics research in the past decade. Nitride perovskites have been computationally predicted to be stable, but few have been synthesized, and their properties remain largely unknown. We synthesized and characterized a nitride perovskite lanthanum tungsten nitride (LaWN3) in the form of oxygen-free sputtered thin films, according to spectroscopy, scattering, and microscopy techniques. We report a large piezoelectric response measured with scanning probe microscopy that together with synchrotron diffraction confirm polar symmetry of the perovskite LaWN3. Our LaWN3 synthesis should inspire growth of other predicted nitride perovskites, and measurements of their properties could lead to functional integration with nitride semiconductors for microelectromechanical devices.

5.
Patterns (N Y) ; 2(12): 100373, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34950901

RESUMO

The High-Throughput Experimental Materials Database (HTEM-DB, htem.nrel.gov) is a repository of inorganic thin-film materials data collected during combinatorial experiments at the National Renewable Energy Laboratory (NREL). This data asset is enabled by NREL's Research Data Infrastructure (RDI), a set of custom data tools that collect, process, and store experimental data and metadata. Here, we describe the experimental data flow from the RDI to the HTEM-DB to illustrate the strategies and best practices currently used for materials data at NREL. Integration of the data tools with experimental instruments establishes a data communication pipeline between experimental researchers and data scientists. This work motivates the creation of similar workflows at other institutions to aggregate valuable data and increase their usefulness for future machine learning studies. In turn, such data-driven studies can greatly accelerate the pace of discovery and design in the materials science domain.

6.
ACS Comb Sci ; 21(7): 537-547, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121098

RESUMO

Combinatorial experiments involve synthesis of sample libraries with lateral composition gradients requiring spatially resolved characterization of structure and properties. Because of the maturation of combinatorial methods and their successful application in many fields, the modern combinatorial laboratory produces diverse and complex data sets requiring advanced analysis and visualization techniques. In order to utilize these large data sets to uncover new knowledge, the combinatorial scientist must engage in data science. For data science tasks, most laboratories adopt common-purpose data management and visualization software. However, processing and cross-correlating data from various measurement tools is no small task for such generic programs. Here we describe COMBIgor, a purpose-built open-source software package written in the commercial Igor Pro environment and designed to offer a systematic approach to loading, storing, processing, and visualizing combinatorial data. It includes (1) methods for loading and storing data sets from combinatorial libraries, (2) routines for streamlined data processing, and (3) data-analysis and -visualization features to construct figures. Most importantly, COMBIgor is designed to be easily customized by a laboratory, group, or individual in order to integrate additional instruments and data-processing algorithms. Utilizing the capabilities of COMBIgor can significantly reduce the burden of data management on the combinatorial scientist.


Assuntos
Técnicas de Química Combinatória , Análise de Dados , Software , Humanos
7.
ACS Comb Sci ; 20(7): 436-442, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29771115

RESUMO

High-throughput synthesis and characterization methods can significantly accelerate the rate of experimental research. For physical vapor deposition (PVD), these methods include combinatorial sputtering with intentional gradients of metal/metalloid composition, temperature, and thickness across the substrate. However, many other synthesis parameters still remain out of reach for combinatorial methods. Here, we extend combinatorial sputtering parameters to include gradients of gaseous elements in thin films. Specifically, a nitrogen gradient was generated in a thin film sample library by placing two MnTe sputtering sources with different gas flows (Ar and Ar/N2) opposite of one another during the synthesis. The nitrogen content gradient was measured along the sample surface, correlating with the distance from the nitrogen source. The phase, composition, and optoelectronic properties of the resulting thin films change as a function of the nitrogen content. This work shows that gradients of gaseous elements can be generated in thin films synthesized by sputtering, expanding the boundaries of combinatorial science.


Assuntos
Técnicas de Química Combinatória/métodos , Nitrogênio/química , Bibliotecas de Moléculas Pequenas/química , Argônio/química , Temperatura Alta , Manganês/química , Propriedades de Superfície , Telúrio/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA