Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(8): 4167-4184, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38324473

RESUMO

Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.


Assuntos
Córtex Cerebral , Splicing de RNA , Proteínas de Ligação a RNA , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Neurogênese/genética , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Cell Mol Life Sci ; 80(4): 111, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002363

RESUMO

Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Sobrevivência Celular , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Fosforilação , Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética
4.
Cell Mol Life Sci ; 80(8): 202, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442828

RESUMO

The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias , Humanos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Cálcio , Transdução de Sinais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Movimento Celular
5.
J Neurooncol ; 163(2): 301-311, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37231231

RESUMO

BACKGROUND: Serum albumin has been demonstrated as prognostic parameter in non-Hodgkin lymphoma (NHL). Primary central nervous system lymphoma (PCNSL) is a rare extranodal NHL with highly aggressive behavior. In this study, we aimed at creating a novel prognostic model for PCNSL based on serum albumin levels. METHODS: We compared several commonly used laboratory nutritional parameters for predicting the survival of PCNSL patients using overall survival (OS) for outcome analysis and receiver operating characteristic curve analysis to determine the optimal cut-off values. Parameters associated with OS were evaluated by univariate and multivariate analyses. Independent prognostic parameters for OS were selected for risk stratification, including albumin ≤ 4.1 g/dL, ECOG PS > 1, and LLR > 166.8, which were associated with shorter OS; albumin > 4.1 g/dL, ECOG PS 0-1 and LLR ≤ 166.8, which were associated with longer OS, and five-fold cross-validation was used for evaluating predictive accuracy of identified prognostic model. RESULTS: By univariate analysis, age, ECOG PS, MSKCC score, Lactate dehydrogenase-to-lymphocyte ratio (LLR), total protein, albumin, hemoglobin, and albumin to globulin ratio (AGR) resulted statistically associated with the OS of PCNSL. By multivariate analysis, albumin ≤ 4.1 g/dL, ECOG PS > 1, and LLR > 166.8 were confirmed to be significant predictors of inferior OS. We explored several PCNSL prognostic models based on albumin, ECOG PS and LLR with 1 point assigned to each parameter. Eventually, a novel and effective PCNSL prognostic model based on albumin and ECOG PS successfully classified patients into three risk groups with 5-year survival rates of 47.5%, 36.9%, and 11.9%, respectively. CONCLUSIONS: The novel two-factor prognostic model based on albumin and ECOG PS we propose represents a simple but significant prognostic tool for assessing newly diagnosed patients with PCNSL.


Assuntos
Linfoma não Hodgkin , Albumina Sérica , Humanos , Prognóstico , Albumina Sérica/metabolismo , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/terapia , Linfócitos , Estudos Retrospectivos
6.
Cell Mol Life Sci ; 78(3): 1101-1112, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32601713

RESUMO

Plexins receive guidance cues from semaphorin ligands and transmit their signal through the plasma membrane. This family of proteins is unique amongst single-pass transmembrane receptors as their intracellular regions interact directly with several small GTPases, which regulate cytoskeletal dynamics and cell adhesion. Here, we characterize the GTPase Activating Protein (GAP) function of Plexin-B1 and find that a cooperative GAP activity towards the substrate GTPase, Rap1b, is associated with the N-terminal Juxtamembrane region of Plexin-B1. Importantly, we unveil an activation mechanism of Plexin-B1 by identifying a novel functional loop which partially blocks Rap1b entry into the plexin GAP domain. Consistent with the concept of allokairy developed for other systems, Plexin-B activity is increased by an apparent substrate-mediated cooperative effect. Simulations and mutagenesis suggest the repositioned JM conformation is stabilized by the new activation switch loop when the active site is occupied, giving rise to faster enzymatic turnover and cooperative behavior. The biological implications, essentially those of a threshold behavior for cell migration, are discussed.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
7.
Int J Mol Sci ; 20(8)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027288

RESUMO

Neuropilins (NRPs) are cell surface glycoproteins, acting as co-receptors for secreted Semaphorins (SEMAs) and for members of the vascular endothelial growth factor (VEGF) family; they have been initially implicated in axon guidance and angiogenesis regulation, and more recently in cancer progression. In addition, NRPs have been shown to control many other fundamental signaling pathways, especially mediated by tyrosine kinase receptors (RTKs) of growth factors, such as HGF (hepatocyte growth factor), PDGF (platelet derived growth factor) and EGF (epidermal growth factor). This enables NRPs to control a range of pivotal mechanisms in the cancer context, from tumor cell proliferation and metastatic dissemination, to tumor angiogenesis and immune escape. Moreover, cancer treatment failures due to resistance to innovative oncogene-targeted drugs is typically associated with the activity of alternative RTK-dependent pathways; and neuropilins' capacity to control oncogenic signaling cascades supports the hypothesis that they could elicit such mechanisms in cancer cells, in order to escape cytotoxic stress and therapeutic attacks. Intriguingly, several studies have recently assayed the impact of NRPs inhibition in combination with diverse anti-cancer drugs. In this minireview, we will discuss the state-of-art about the relevance of NRPs as potential predictive biomarkers of drug response, and the rationale to target these proteins in combination with other anticancer therapies.


Assuntos
Neoplasias/terapia , Neuropilinas/metabolismo , Animais , Humanos , Terapia de Alvo Molecular , Neuropilinas/química , Microambiente Tumoral
8.
Int J Mol Sci ; 20(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658382

RESUMO

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients' prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Semaforinas/metabolismo , Transdução de Sinais , Microambiente Tumoral , Imunidade Adaptativa , Animais , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Família Multigênica , Neoplasias/genética , Neoplasias/imunologia , Semaforinas/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
9.
Int J Mol Sci ; 20(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783481

RESUMO

Cadherins are a major family of cell-cell adhesive receptors, which are implicated in development, tissue homeostasis, and cancer. Here, we show a novel mechanism of post-translational regulation of E-cadherin in cancer cells by an intramembrane protease of the Rhomboid family, RHBDL2, which leads to the shedding of E-cadherin extracellular domain. In addition, our data indicate that RHBDL2 mediates a similar activity on VE-cadherin, which is selectively expressed by endothelial cells. We show that RHBDL2 promotes cell migration, which is consistent with its ability to interfere with the functional role of cadherins as negative regulators of motility; moreover, the two players appear to lie in the same functional pathway. Importantly, we show that RHBDL2 expression is induced by the inflammatory chemokine TNFα. The E-cadherin extracellular domain is known to be released by metalloproteases (MMPs); however, here, we provide evidence of a novel MMP-independent, TNFα inducible, E-cadherin processing mechanism that is mediated by RHBDL2. Thus, the intramembrane protease RHBDL2 is a novel regulator of cadherins promoting cell motility.


Assuntos
Caderinas/metabolismo , Metaloproteases/metabolismo , Serina Endopeptidases/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Quimiocinas/metabolismo , Chlorocebus aethiops , Cães , Células HEK293 , Humanos , Inflamação/metabolismo , Células Madin Darby de Rim Canino , Células PC-3 , Serina Proteases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Molecules ; 23(2)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462871

RESUMO

Abstract Notch signaling is a highly conserved pathway in all metazoans, which is deeply involved in the regulation of cell fate and differentiation, proliferation and migration during development. Research in the last decades has shown that the various components of the Notch signaling cascade are either upregulated or activated in human cancers. Therefore, its downregulation stands as a promising and powerful strategy for cancer therapy. Here, we discuss the recent advances in the development of small molecule inhibitors, blocking antibodies and oligonucleotides that hinder Notch activity, and their outcome in clinical trials. Although Notch was initially identified as an oncogene, later studies showed that it can also act as a tumor suppressor in certain contexts. Further complexity is added by the existence of numerous Notch family members, which exert different activities and can be differentially targeted by inhibitors, potentially accounting for contradictory data on their therapeutic efficacy. Notably, recent evidence supports the rationale for combinatorial treatments including Notch inhibitors, which appear to be more effective than single agents in fighting cancer.


Assuntos
Neoplasias/tratamento farmacológico , Receptores Notch/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos
11.
PLoS Biol ; 12(3): e1001808, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24618750

RESUMO

Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Fertilidade/fisiologia , Neuropilina-1/fisiologia , Semaforina-3A/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Ciclo Estral/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/fisiologia , Ligantes , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Ratos , Ratos Sprague-Dawley , Semaforina-3A/genética , Semaforina-3A/fisiologia , Transdução de Sinais
12.
Cell Mol Life Sci ; 73(8): 1609-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26794845

RESUMO

Semaphorins are signaling molecules playing pivotal roles not only as axon guidance cues, but are also involved in the regulation of a range of biological processes, such as immune response, angiogenesis and invasive tumor growth. The main functional receptors for semaphorins are plexins, which are large single-pass transmembrane molecules. Semaphorin signaling through plexins-the "classical" forward signaling-affects cytoskeletal remodeling and integrin-dependent adhesion, consequently influencing cell migration. Intriguingly, semaphorins and plexins can interact not only in trans, but also in cis, leading to differentiated and highly regulated signaling outputs. Moreover, transmembrane semaphorins can also mediate a so-called "reverse" signaling, by acting not as ligands but rather as receptors, and initiate a signaling cascade through their own cytoplasmic domains. Semaphorin reverse signaling has been clearly demonstrated in fruit fly Sema1a, which is required to control motor axon defasciculation and target recognition during neuromuscular development. Sema1a invertebrate semaphorin is most similar to vertebrate class-6 semaphorins, and examples of semaphorin reverse signaling in mammalians have been described for these family members. Reverse signaling is also reported for other vertebrate semaphorin subsets, e.g. class-4 semaphorins, which bear potential PDZ-domain interaction motifs in their cytoplasmic regions. Therefore, thanks to their various signaling abilities, transmembrane semaphorins can play multifaceted roles both in developmental processes and in physiological as well as pathological conditions in the adult.


Assuntos
Comunicação Celular/fisiologia , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Movimento Celular/fisiologia , Drosophila , Humanos , Neoplasias/patologia , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais
13.
Semin Cell Dev Biol ; 24(3): 179-89, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23099250

RESUMO

The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding "normal" cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.


Assuntos
Neoplasias/tratamento farmacológico , Semaforinas/metabolismo , Animais , Progressão da Doença , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
14.
Aging Dis ; 15(2): 517-534, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728580

RESUMO

Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.


Assuntos
Sarcopenia , Semaforinas , Humanos , Junção Neuromuscular/patologia , Músculo Esquelético/patologia , Axônios/patologia , Sarcopenia/patologia
15.
Cancer Immunol Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874583

RESUMO

Semaphorin-Plexin signaling plays a major role in the tumor microenvironment (TME). In particular, Semaphorin 4D (SEMA4D) has been shown to promote tumor growth and metastasis; however, the role of its high-affinity receptor Plexin-B1 (PLXNB1), which is expressed in the TME, is poorly understood. In this study, we directly targeted PLXNB1 in the TME of triple-negative murine breast carcinoma to elucidate its relevance in cancer progression. We found that primary tumor growth, and metastatic dissemination were strongly reduced in PLXNB1-deficient mice, which showed longer survival. PLXNB1-loss in the TME induced a switch in the polarization of tumor-associated macrophages (TAMs) towards a pro-inflammatory M1 phenotype and enhanced the infiltration of CD8+ T lymphocytes both in primary tumors and in distant metastases. Moreover, PLXNB1-deficiency promoted a shift in the Th1/Th2 balance of the T-cell population and an antitumor gene signature, with the up-regulation of Icos, Perforin-1, Stat3 and Ccl5 in tumor infiltrating lymphocytes (TILs). We thus tested the translational relevance of TME re-programming driven by PLXNB1 inactivation for responsiveness to immunotherapy. Indeed, in the absence of PLXNB1, the efficacy of anti-PD-1 blockade was strongly enhanced, efficiently reducing tumor growth and distant metastasis. Consistent with this, pharmacological PLXNB1 blockade by systemic treatment with a specific inhibitor significantly hampered breast cancer growth and enhanced the antitumor activity of the anti-PD1 treatment in a preclinical model. Altogether, these data indicate that PLXNB1 signaling controls the antitumor immune response in the TME and highlight this receptor as a promising immune therapeutic target for metastatic breast cancers.

16.
Trends Mol Med ; 29(10): 817-829, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598000

RESUMO

Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Semaforinas , Humanos , Neuropilinas , Microambiente Tumoral , Neoplasias Pancreáticas
17.
J Exp Clin Cancer Res ; 42(1): 223, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653435

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) patients bearing the ITD mutation in the tyrosine kinase receptor FLT3 (FLT3-ITD) present a poor prognosis and a high risk of relapse. FLT3-ITD is retained in the endoplasmic reticulum (ER) and generates intrinsic proteotoxic stress. We devised a strategy based on proteotoxic stress, generated by the combination of low doses of the differentiating agent retinoic acid (R), the proteasome inhibitor bortezomib (B), and the oxidative stress inducer arsenic trioxide (A). METHODS: We treated FLT3-ITD+ AML cells with low doses of the aforementioned drugs, used alone or in combinations and we investigated the induction of ER and oxidative stress. We then performed the same experiments in an in vitro co-culture system of FLT3-ITD+ AML cells and bone marrow stromal cells (BMSCs) to assess the protective role of the niche on AML blasts. Eventually, we tested the combination of drugs in an orthotopic murine model of human AML. RESULTS: The combination RBA exerts strong cytotoxic activity on FLT3-ITD+ AML cell lines and primary blasts isolated from patients, due to ER homeostasis imbalance and generation of oxidative stress. AML cells become completely resistant to the combination RBA when treated in co-culture with BMSCs. Nonetheless, we could overcome such protective effects by using high doses of ascorbic acid (Vitamin C) as an adjuvant. Importantly, the combination RBA plus ascorbic acid significantly prolongs the life span of a murine model of human FLT3-ITD+ AML without toxic effects. Furthermore, we show for the first time that the cross-talk between AML and BMSCs upon treatment involves disruption of the actin cytoskeleton and the actin cap, increased thickness of the nuclei, and relocalization of the transcriptional co-regulator YAP in the cytosol of the BMSCs. CONCLUSIONS: Our findings strengthen our previous work indicating induction of proteotoxic stress as a possible strategy in FLT3-ITD+ AML therapy and open to the possibility of identifying new therapeutic targets in the crosstalk between AML and BMSCs, involving mechanotransduction and YAP signaling.


Assuntos
Citoproteção , Tretinoína , Humanos , Animais , Camundongos , Tretinoína/farmacologia , Modelos Animais de Doenças , Mecanotransdução Celular , Estresse Proteotóxico , Ácido Ascórbico , Morte Celular
18.
Cell Rep Med ; 4(8): 101142, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37557179

RESUMO

EGFR-specific tyrosine kinase inhibitors (TKIs), especially osimertinib, have changed lung cancer therapy, but secondary mutations confer drug resistance. Because other EGFR mutations promote dimerization-independent active conformations but L858R strictly depends on receptor dimerization, we herein evaluate the therapeutic potential of dimerization-inhibitory monoclonal antibodies (mAbs), including cetuximab. This mAb reduces viability of cells expressing L858R-EGFR and blocks the FOXM1-aurora survival pathway, but other mutants show no responses. Unlike TKI-treated patient-derived xenografts, which relapse post osimertinib treatment, cetuximab completely prevents relapses of L858R+ tumors. We report that osimertinib's inferiority associates with induction of mutagenic reactive oxygen species, whereas cetuximab's superiority is due to downregulation of adaptive survival pathways (e.g., HER2) and avoidance of mutation-prone mechanisms that engage AXL, RAD18, and the proliferating cell nuclear antigen. These results identify L858R as a predictive biomarker, which may pave the way for relapse-free mAb monotherapy relevant to a large fraction of patients with lung cancer.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Anticorpos Monoclonais/uso terapêutico , Biomarcadores , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases
19.
EMBO Mol Med ; 15(3): e16104, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722641

RESUMO

The genetic changes sustaining the development of cancers of unknown primary (CUP) remain elusive. The whole-exome genomic profiling of 14 rigorously selected CUP samples did not reveal specific recurring mutation in known driver genes. However, by comparing the mutational landscape of CUPs with that of most other human tumor types, it emerged a consistent enrichment of changes in genes belonging to the axon guidance KEGG pathway. In particular, G842C mutation of PlexinB2 (PlxnB2) was predicted to be activating. Indeed, knocking down the mutated, but not the wild-type, PlxnB2 in CUP stem cells resulted in the impairment of self-renewal and proliferation in culture, as well as tumorigenic capacity in mice. Conversely, the genetic transfer of G842C-PlxnB2 was sufficient to promote CUP stem cell proliferation and tumorigenesis in mice. Notably, G842C-PlxnB2 expression in CUP cells was associated with basal EGFR phosphorylation, and EGFR blockade impaired the viability of CUP cells reliant on the mutated receptor. Moreover, the mutated PlxnB2 elicited CUP cell invasiveness, blocked by EGFR inhibitor treatment. In sum, we found that a novel activating mutation of the axon guidance gene PLXNB2 sustains proliferative autonomy and confers invasive properties to stem cells isolated from cancers of unknown primary, in EGFR-dependent manner.


Assuntos
Neoplasias Primárias Desconhecidas , Células-Tronco Neoplásicas , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Orientação de Axônios , Receptores ErbB/genética , Mutação , Recidiva Local de Neoplasia , Neoplasias Primárias Desconhecidas/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neoplásicas/patologia
20.
Arterioscler Thromb Vasc Biol ; 31(4): 741-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21205984

RESUMO

OBJECTIVE: The role of semaphorins in tumor progression is still poorly understood. In this study, we aimed at elucidating the regulatory role of semaphorin 3A (SEMA3A) in primary tumor growth and metastatic dissemination. METHODS AND RESULTS: We used 3 different experimental approaches in mouse tumor models: (1) overexpression of SEMA3A in tumor cells, (2) systemic expression of SEMA3A following liver gene transfer in mice, and (3) tumor-targeted release of SEMA3A using gene modified Tie2-expressing monocytes as delivery vehicles. In each of these experimental settings, SEMA3A efficiently inhibited tumor growth by inhibiting vessel function and increasing tumor hypoxia and necrosis, without promoting metastasis. We further show that the expression of the receptor neuropilin-1 in tumor cells is required for SEMA3A-dependent inhibition of tumor cell migration in vitro and metastatic spreading in vivo. CONCLUSIONS: In sum, both systemic and tumor-targeted delivery of SEMA3A inhibits tumor angiogenesis and tumor growth in multiple mouse models; moreover, SEMA3A inhibits the metastatic spreading from primary tumors. These data support the rationale for further investigation of SEMA3A as an anticancer molecule.


Assuntos
Neoplasias da Mama/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Neoplasias Pulmonares/prevenção & controle , Neovascularização Patológica/prevenção & controle , Semaforina-3A/metabolismo , Células-Tronco/metabolismo , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Necrose , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neuropilina-1/metabolismo , Comunicação Parácrina , Interferência de RNA , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Semaforina-3A/genética , Transdução de Sinais , Células Estromais/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA