Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 19(4): 419-427, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31959949

RESUMO

Despite the high energy density of lithium-rich layered-oxide electrodes, their real-world implementation in batteries is hindered by the substantial voltage decay on cycling. This voltage decay is widely accepted to mainly originate from progressive structural rearrangements involving irreversible transition-metal migration. As prevention of this spontaneous cation migration has proven difficult, a paradigm shift toward management of its reversibility is needed. Herein, we demonstrate that the reversibility of the cation migration of lithium-rich nickel manganese oxides can be remarkably improved by altering the oxygen stacking sequences in the layered structure and thereby dramatically reducing the voltage decay. The preeminent intra-cycle reversibility of the cation migration is experimentally visualized, and first-principles calculations reveal that an O2-type structure restricts the movements of transition metals within the Li layer, which effectively streamlines the returning migration path of the transition metals. Furthermore, we propose that the enhanced reversibility mitigates the asymmetry of the anionic redox in conventional lithium-rich electrodes, promoting the high-potential anionic reduction, thereby reducing the subsequent voltage hysteresis. Our findings demonstrate that regulating the reversibility of the cation migration is a practical strategy to reduce voltage decay and hysteresis in lithium-rich layered materials.

2.
ACS Appl Mater Interfaces ; 16(29): 37994-38005, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985897

RESUMO

The commercial viability of emerging lithium-sulfur batteries (LSBs) remains greatly hindered by short lifespans caused by electrically insulating sulfur, lithium polysulfides (Li2Sn; 1 ≤ n ≤ 8) shuttling, and sluggish sulfur reduction reactions (SRRs). This work proposes the utilization of a hybrid composed of sulfiphilic MoS2 and mayenite electride (C12A7:e-) as a cathode host to address these challenges. Specifically, abundant cement-based C12A7:e- is the most stable inorganic electride, possessing the ultimate electrical conductivity and low work function. Through density functional theory simulations, the key aspects of the MoS2/C12A7:e- hybrid including electronic properties, interfacial binding with Li2Sn, Li+ diffusion, and SRR have been unraveled. Our findings reveal the rational rules for MoS2 as an efficient cathode host by enhancing its mutual electrical conductivity and surface polarity via MoS2/C12A7:e-. The improved electrical conductivity of MoS2 is attributed to the electron donation from C12A7:e- to MoS2, yielding a semiconductor-to-metal transition. The resultant band positions of MoS2/C12A7:e- are well matched with those of conventional current-collecting materials (i.e., Cu and Ni), electrochemically enhancing the electronic transport. The accepted charge also intensifies MoS2 surface polarity for attracting polar Li2Sn by forming stronger bonds with Li2Sn via ionic Li-S bonds than electrolytes with Li2Sn, thereby preventing polysulfide shuttling. Importantly, MoS2/C12A7:e- not only promotes rapid reaction kinetics by reducing ionic diffusion barriers but also lowers the Gibbs free energies of the SRR for effective S8-to-Li2S conversion. Beyond the reported applications of C12A7:e-, this work highlights its functionality as an electrode material to boost the efficiency of LSBs.

3.
Nat Nanotechnol ; 16(1): 77-84, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33139935

RESUMO

Rechargeable organic batteries show great potential as a low-cost, sustainable and mass-producible alternatives to current transition-metal-based cells; however, serious electrode dissolution issues and solubilization of organic redox intermediates (shuttle effect) have plagued the capacity retention and cyclability of these cells. Here we report on the use of a metal-organic framework (MOF) gel membrane as a separator for organic batteries. The homogeneous micropores, intrinsic of the MOF-gel separator, act as permselective channels for targeted organic intermediates, thereby mitigating the shuttling problem without sacrificing power. A battery using a MOF-gel separator and 5,5'-dimethyl-2,2'-bis-p-benzoquinone (Me2BBQ) as the electrode displays high cycle stability with capacity retention of 82.9% after 2,000 cycles, corresponding to a capacity decay of ~0.008% per cycle, with a discharge capacity of ~171 mA h g-1 at a current density of 300 mA g-1. The molecular and ionic sieving capabilities of MOF-gel separators promise general applicability, as pore size can be tuned to specific organic electrode materials. The use of MOF-gel separators to prevent side reactions of soluble organic redox intermediates could lead to the development of rechargeable organic batteries with high energy density and long cycling life.

4.
Nat Commun ; 10(1): 2598, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197187

RESUMO

Co-intercalation reactions make graphite as promising anodes for sodium ion batteries, however, the high redox potentials significantly lower the energy density. Herein, we investigate the factors that influence the co-intercalation potential of graphite and find that the tuning of the voltage as large as 0.38 V is achievable by adjusting the relative stability of ternary graphite intercalation compounds and the solvent activity in electrolytes. The feasibility of graphite anode in sodium ion batteries is confirmed in conjunction with Na1.5VPO4.8F0.7 cathodes by using the optimal electrolyte. The sodium ion battery delivers an improved voltage of 3.1 V, a high power density of 3863 W kg-1both electrodes, negligible temperature dependency of energy/power densities and an extremely low capacity fading rate of 0.007% per cycle over 1000 cycles, which are among the best thus far reported for sodium ion full cells, making it a competitive choice in large-scale energy storage systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA