Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 198: 106554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844243

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.


Assuntos
Astrócitos , Proliferação de Células , Doença de Huntington , Microglia , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Microglia/metabolismo , Microglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Proliferação de Células/fisiologia , Adulto , Idoso , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Gliose/metabolismo , Gliose/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Membrana , Proteínas dos Microfilamentos
2.
Neurobiol Dis ; 174: 105884, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36220612

RESUMO

Huntington's disease (HD) is caused by a CAG repeat expansion mutation in the gene encoding the huntingtin (Htt) protein, with mutant Htt protein subsequently forming aggregates within the brain. Mutant Htt is a current target for novel therapeutic strategies for HD, however, the lack of translation from preclinical research to disease-modifying treatments highlights the need to improve our understanding of the role of Htt protein in the human brain. This study aims to undertake an immunohistochemical screen of 12 candidate antibodies against various sequences along the Htt protein to characterize Htt distribution and expression in post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was performed on middle temporal gyrus TMAs comprising of up to 28 HD and 27 age-matched control cases, using 12 antibodies specific to various sequences along the Htt protein. From this study, six antibodies directed to the Htt N-terminus successfully immunolabeled human brain tissue. Htt aggregates and Htt protein expression levels for the six successful antibodies were subsequently quantified with a customized automated image analysis pipeline on the TMAs. A 2.5-12 fold increase in the number of Htt aggregates were detected in HD cases using antibodies MAB5374, MW1, and EPR5526, despite no change in overall Htt protein expression compared to control cases, suggesting a redistribution of Htt into aggregates in HD. MAB5374, MW1, and EPR5526 Htt aggregate numbers were positively correlated with CAG repeat length, and negatively correlated with the age of symptom onset in HD. However, the number of Htt aggregates did not correlate with the degree of striatal degeneration or the degree of cortical neuron loss. Together, these results suggest that longer CAG repeat lengths correlate with Htt aggregation in the HD human brain, and greater Htt cortical aggregate deposition is associated with an earlier age of symptom onset in HD. This study also reinforces that antibodies MAB5492, MW8, and 2B7 which have been utilized to characterize Htt in animal models of HD do not specifically immunolabel Htt aggregates in HD human brain tissue exclusively, thereby highlighting the need for validated means of Htt detection to support drug development for HD.


Assuntos
Doença de Huntington , Animais , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Corpo Estriado/metabolismo , Encéfalo/metabolismo , Mutação
3.
Ann Neurol ; 85(3): 396-405, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30635944

RESUMO

OBJECTIVE: Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by variable motor and behavioral symptoms attributed to major neuropathology of mainly the basal ganglia and cerebral cortex. The role of the cerebellum, a brain region involved in the coordination of movements, in HD neuropathology has been controversial. This study utilizes postmortem human brain tissue to investigate whether Purkinje cell degeneration in the neocerebellum is present in HD, and how this relates to disease symptom profiles. METHODS: Unbiased stereological counting methods were used to quantify the total number of Purkinje cells in 15 HD cases and 8 neurologically normal control cases. Based on their predominant symptoms, the HD cases were categorized into 2 groups: "motor" or "mood." RESULTS: The results demonstrated a significant 43% loss of Purkinje cells in HD cases with predominantly motor symptoms, and no cell loss in cases showing a major mood phenotype. There was no significant correlation between Purkinje cell loss and striatal neuropathological grade, postmortem delay, CAG repeat in the IT15 gene, or age at death. INTERPRETATION: This study shows a compelling relationship between Purkinje cell loss in the HD neocerebellum and the HD motor symptom phenotype, which, together with our previous human brain studies on the same HD cases, provides novel perspectives interrelating and correlating the variable cerebellar, basal ganglia, and neocortical neuropathology with the variability of motor/mood symptom profiles in the human HD brain. ANN NEUROL 2019;85:396-405.


Assuntos
Cerebelo/patologia , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Doença de Huntington/psicologia , Células de Purkinje/patologia , Adulto , Idoso , Autopsia , Encéfalo/patologia , Estudos de Casos e Controles , Contagem de Células , Corpo Estriado/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Fenótipo
4.
Neurobiol Dis ; 132: 104589, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31454549

RESUMO

Traditionally regarded to coordinate movement, the cerebellum also exerts non-motor functions including the regulation of cognitive and behavioral processing, suggesting a potential role in neurodegenerative conditions affecting cognition, such as Alzheimer's disease (AD). This study aims to investigate neuropathology and AD-related molecular changes within the neocerebellum using post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was conducted on neocerebellar paraffin-embedded TMAs from 24 AD and 24 matched control cases, and free-floating neocerebellar sections from 6 AD and 6 controls. Immunoreactivity was compared between control and AD groups for neuropathological hallmarks (amyloid-ß, tau, ubiquitin), Purkinje cells (calbindin), microglia (IBA1, HLA-DR), astrocytes (GFAP) basement-membrane associated molecules (fibronectin, collagen IV), endothelial cells (CD31/PECAM-1) and mural cells (PDGFRß, αSMA). Amyloid-ß expression (total immunolabel intensity) and load (area of immunolabel) was increased by >4-fold within the AD cerebellum. Purkinje cell counts, ubiquitin and tau immunoreactivity were unchanged in AD. IBA1 expression and load was increased by 91% and 69%, respectively, in AD, with no change in IBA1-positive cell number. IBA1-positive cell process length and branching was reduced by 22% and 41%, respectively, in AD. HLA-DR and GFAP immunoreactivity was unchanged in AD. HLA-DR-positive cell process length and branching was reduced by 33% and 49%, respectively, in AD. Fibronectin expression was increased by 27% in AD. Collagen IV, PDGFRß and αSMA immunoreactivity was unchanged in AD. The number of CD31-positive vessels was increased by 98% in AD, suggesting the increase in CD31 expression and load in AD is due to greater vessel number. The PDGFRß/CD31 load ratio was reduced by 59% in AD. These findings provide evidence of molecular changes affecting microglia and the neurovasculature within the AD neocerebellum. These changes, occurring without overt neuropathology, support the hypothesis of microglial and neurovascular dysfunction as drivers of AD, which has implications on the neocerebellar contribution to AD symptomatology and pathophysiology.


Assuntos
Barreira Hematoencefálica/patologia , Cerebelo/patologia , Microglia/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Autopsia , Barreira Hematoencefálica/metabolismo , Cerebelo/metabolismo , Feminino , Humanos , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade
5.
NPJ Parkinsons Dis ; 10(1): 90, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664405

RESUMO

Gingipains are protease virulence factors produced by Porphyromonas gingivalis, a Gram-negative bacterium best known for its role in chronic periodontitis. Gingipains were recently identified in the middle temporal gyrus of postmortem Alzheimer's disease (AD) brains, where gingipain load correlated with AD diagnosis and tau and ubiquitin pathology. Since AD and Parkinson's disease (PD) share some overlapping pathologic features, including nigral pathology and Lewy bodies, the current study explored whether gingipains are present in the substantia nigra pars compacta of PD brains. In immunohistochemical techniques and multi-channel fluorescence studies, gingipain antigens were abundant in dopaminergic neurons in the substantia nigra of both PD and neurologically normal control brains. 3-dimensional reconstructions of Lewy body containing neurons revealed that gingipains associated with the periphery of alpha-synuclein aggregates but were occasionally observed inside aggregates. In vitro proteomic analysis demonstrated that recombinant alpha-synuclein is cleaved by lysine-gingipain, generating multiple alpha-synuclein fragments including the non-amyloid component fragments. Immunogold electron microscopy with co-labeling of gingipains and alpha-synuclein confirmed the occasional colocalization of gingipains with phosphorylated (pSER129) alpha-synuclein. In dopaminergic neurons, gingipains localized to the perinuclear cytoplasm, neuromelanin, mitochondria, and nucleus. These data suggest that gingipains localize in dopaminergic neurons in the substantia nigra and interact with alpha-synuclein.

6.
Nat Protoc ; 16(4): 2308-2343, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742177

RESUMO

A major challenge in the treatment of neurodegenerative disorders is the translation of effective therapies from the lab to the clinic. One approach to improve this process is the use of human brain tissue microarray (HBTMA) technology to aid in the discovery and validation of drug targets for brain disorders. In this protocol we describe a platform for the production of high-quality HBTMAs that can be used for drug target discovery and validation. We provide examples of the use of this platform and describe detailed protocols for HBTMA design, construction and use for both protein and mRNA detection. This platform requires less tissue and reagents than single-slide approaches, greatly increasing throughput and capacity, enabling samples to be compared in a more consistent way. It takes 4 d to construct a 60 core HBTMA. Immunohistochemistry and in situ hybridization take a further 2 d. Imaging of each HBTMA slide takes 15 min, with subsequent high-content analysis taking 30 min-2 h.


Assuntos
Desenvolvimento de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Análise Serial de Tecidos/métodos , Automação , Vasos Sanguíneos/fisiologia , Humanos , Neuritos/metabolismo , Crescimento Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA