Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897355

RESUMO

Neurogenesis is initiated by basic helix-loop-helix proneural proteins. Here, we show that Actin-related protein 6 (Arp6), a core component of the H2A.Z exchange complex SWR1, interacts with proneural proteins and is crucial for efficient onset of proneural protein target gene expression. Arp6 mutants exhibit reduced transcription in sensory organ precursors (SOPs) downstream of the proneural protein patterning event. This leads to retarded differentiation and division of SOPs and smaller sensory organs. These phenotypes are also observed in proneural gene hypomorphic mutants. Proneural protein expression is not reduced in Arp6 mutants. Enhanced proneural gene expression fails to rescue retarded differentiation in Arp6 mutants, suggesting that Arp6 acts downstream of or in parallel with proneural proteins. H2A.Z mutants display Arp6-like retardation in SOPs. Transcriptomic analyses demonstrate that loss of Arp6 and H2A.Z preferentially decreases expression of proneural protein-activated genes. H2A.Z enrichment in nucleosomes around the transcription start site before neurogenesis correlates highly with greater activation of proneural protein target genes by H2A.Z. We propose that upon proneural protein binding to E-box sites, H2A.Z incorporation around the transcription start site allows rapid and efficient activation of target genes, promoting rapid neural differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ativação Transcricional , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544873

RESUMO

The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Folistatina/fisiologia , Hipocampo/metabolismo , Neurogênese , Plasticidade Neuronal , Aprendizagem Espacial/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Cognição , Feminino , Potenciação de Longa Duração , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/fisiologia
3.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892173

RESUMO

A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.


Assuntos
Adenosina Desaminase , Percepção Olfatória , Edição de RNA , Animais , Camundongos , Percepção Olfatória/fisiologia , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Bulbo Olfatório/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neurônios/metabolismo , Sistemas CRISPR-Cas , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
4.
FASEB J ; 35(10): e21929, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34553421

RESUMO

Recent studies emphasize the importance of 5-HT2C receptor (5-HT2C R) signaling in the regulation of energy homeostasis. The 5-HT2C R is the only G-protein-coupled receptor known to undergo post-transcriptional adenosine to inosine (A-to-I) editing by adenosine deaminase acting on RNA (ADAR). 5-HT2C R has emerged as an important role in the modulation of pancreatic ß cell functions. This study investigated mechanisms behind the effects of palmitic acid (PA) on insulin secretion in different overexpressed 5-HT2C R edited isoforms in pancreatic MIN6 ß cells. Results showed that the expressions of 5HT2C R and ADAR2 were upregulated in the pancreatic islets of mice fed with high-fat diet (HFD) compared to control mice. PA treatment significantly induced the expressions of 5-HT2C R and ADAR2 in pancreatic MIN6 ß cells. PA treatment significantly induced the editing of 5-HT2C R in pancreatic MIN6 ß cells. There was no significant difference in cell viability between naïve cells and three overexpressed 5-HT2C R edited isoforms in pancreatic MIN6 ß cells. Overexpressed 5-HT2C R edited isoforms showed reduced glucose-stimulated insulin secretion (GSIS) compared with green fluorescent protein (GFP) expressed cells. Moreover, 5-HT2C R edited isoforms displayed reduced endoplasmic reticulum (ER) calcium release and store-operated calcium entry (SOCE) activation, probably through inhibition of stromal interaction molecule 1 trafficking under PA treatment. Altogether, our results show that PA-mediated editing of 5-HT2C R modulates GSIS through alteration of ER calcium release and SOCE activation in pancreatic MIN6 ß cells.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Edição de RNA , Receptor 5-HT2C de Serotonina/genética , Adenosina Desaminase/genética , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Hiperlipídica , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Modelos Animais , Ácido Palmítico/farmacologia , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
J Biomed Sci ; 29(1): 90, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310172

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the sixth leading cause of cancer-associated death worldwide with a dismal overall 5-year survival rate of less than 20%. The standard first-line therapy for advanced ESCC is concomitant chemo-radiation therapy (CCRT); however, patients usually develop resistance, resulting in unfavorable outcomes. Therefore, it is urgent to identify the mechanisms underlying CCRT resistance and develop effective treatment strategies. METHODS: Patients' endoscopic biopsy tumor tissues obtained before CCRT treatment were used to perform RNA-seq and GSEA analysis. Immunohistochemical (IHC) staining, chromatin immunoprecipitation (ChIP), and promoter reporter analyses were conducted to investigate the relationship between SOX17 and NRF2. Xenograft mouse models were used to study the role of SOX17/NRF2 axis in tumor growth and the efficacy of carboxymethyl cellulose-coated zero-valent-iron (ZVI@CMC). RESULTS: In this study, a notable gene expression signature associated with NRF2 activation was observed in the poor CCRT responders. Further, IHC staining of endoscopic biopsy of 164 ESCC patients revealed an inverse correlation between NRF2 and SOX17, a tumor-suppressive transcription factor with low expression in ESCC due to promoter hypermethylation. Using ChIP and promoter reporter analyses, we demonstrated that SOX17 was a novel upstream transcriptional suppressor of NRF2. In particular, SOX17low/NRF2high nuclear level significantly correlated with poor CCRT response and poor survival, indicating that the dysregulation of SOX17/NRF2 axis played a pivotal role in CCRT resistance and tumor progression. Notably, the in-house developed nanoparticle ZVI@CMC functioned as an inhibitor of DNA methyltransferases to restore expression of SOX17 that downregulated NRF2, thereby overcoming the resistance in ESCC. Additionally, the combination of ZVI@CMC with radiation treatment significantly augmented anticancer efficacy to inhibit tumor growth in CCRT resistant cancer. CONCLUSION: This study identifies a novel SOX17low/NRF2high signature in ESCC patients with poor prognosis, recognizes SOX17 as a transcriptional repressor of NRF2, and provides a promising strategy targeting SOX17/NRF2 axis to overcome resistance.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/terapia , Regulação Neoplásica da Expressão Gênica , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Fatores de Transcrição SOXF/genética
6.
FASEB J ; 34(1): 1107-1121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914708

RESUMO

The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.


Assuntos
Infecções Bacterianas/metabolismo , Caenorhabditis elegans/microbiologia , Nucléolo Celular/metabolismo , Enzimas Desubiquitinantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Infecções por Pseudomonas , Interferência de RNA , Infecções Estafilocócicas , Estaurosporina/farmacologia , Ubiquitina Tiolesterase/metabolismo
7.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948460

RESUMO

Adenosine deaminase acting on RNA (ADAR)-catalyzed adenosine-to-inosine RNA editing is potentially dysregulated in neoplastic progression. However, how this transcriptome recoding process is functionally correlated with tumorigenesis remains largely elusive. Our analyses of RNA editome datasets identify hypoxia-related genes as A-to-I editing targets. In particular, two negative regulators of HIF-1A-the natural antisense transcript HIF1A-AS2 and the ubiquitin ligase scaffold LIMD1-are directly but differentially modulated by ADAR1. We show that HIF1A-AS2 antagonizes the expression of HIF-1A in the immediate-early phase of hypoxic challenge, likely through a convergent transcription competition in cis ADAR1 in turn suppresses transcriptional progression of the antisense gene. In contrast, ADAR1 affects LIMD1 expression post-transcriptionally, by interfering with the cytoplasmic translocation of LIMD1 mRNA and thus protein translation. This multi-tier regulation coordinated by ADAR1 promotes robust and timely accumulation of HIF-1α upon oxygen depletion and reinforces target gene induction and downstream angiogenesis. Our results pinpoint ADAR1-HIF-1α axis as a hitherto unrecognized key regulator in hypoxia.


Assuntos
Adenosina Desaminase/genética , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Citoplasma/genética , Humanos , Proteínas com Domínio LIM/genética , Células MCF-7 , Edição de RNA/genética , RNA Mensageiro/genética , Transcrição Gênica/genética
8.
RNA Biol ; 18(5): 796-808, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406999

RESUMO

The pathogenic human enterovirus EV-A71 has raised serious public health concerns. A hallmark of EV-A71 infection is the distortion of host transcriptomes in favour of viral replication. While high-throughput approaches have been exploited to dissect these gene dysregulations, they do not fully capture molecular perturbations at the single-cell level and in a physiologically relevant context. In this study, we applied a single-cell RNA sequencing approach on infected differentiated enterocyte cells (C2BBe1), which model the gastrointestinal epithelium targeted initially by EV-A71. Our single-cell analysis of EV-A71-infected culture provided several lines of illuminating observations: 1) This systems approach demonstrated extensive cell-to-cell variation in a single culture upon viral infection and delineated transcriptomic differences between the EV-A71-infected and bystander cells. 2) By analysing expression profiles of known EV-A71 receptors and entry facilitation factors, we found that ANXA2 was closely correlated in expression with the viral RNA in the infected population, supporting its role in EV-A71 entry in the enteric cells. 3) We further catalogued dysregulated lncRNAs elicited by EV-A71 infection and demonstrated the functional implication of lncRNA CYTOR in promoting EV-A71 replication. Viewed together, our single-cell transcriptomic analysis illustrated at the single-cell resolution the heterogeneity of host susceptibility to EV-A71 and revealed the involvement of lncRNAs in host antiviral response.


Assuntos
Enterovirus Humano A/patogenicidade , Interações Hospedeiro-Patógeno/genética , Transcriptoma , Células Cultivadas , Enterócitos/metabolismo , Enterócitos/patologia , Enterócitos/virologia , Enterovirus Humano A/genética , Enterovirus Humano A/imunologia , Infecções por Enterovirus/genética , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/patologia , Infecções por Enterovirus/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , RNA Longo não Codificante/genética , Análise de Célula Única , Replicação Viral/genética
9.
J Biol Chem ; 293(26): 10158-10171, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29769310

RESUMO

Processing of the eukaryotic transcriptome is a dynamic regulatory mechanism that confers genetic diversity, and splicing and adenosine to inosine (A-to-I) RNA editing are well-characterized examples of such processing. Growing evidence reveals the cross-talk between the splicing and RNA editing, but there is a paucity of substantial evidence for its mechanistic details and contribution in a physiological context. Here, our findings demonstrate that tumor-associated differential RNA editing, in conjunction with splicing machinery, regulates the expression of variants of HNRPLL, a gene encoding splicing factor. We discovered an HNRPLL transcript variant containing an additional exon 12A (E12A), which is a substrate of ADAR1 and ADAR2. Adenosine deaminases acting on RNA (ADAR) direct deaminase-dependent expression of the E12A transcript, and ADAR-mediated regulation of E12A is largely splicing-based, and does not affect the stability or nucleocytoplasmic distribution of the transcript. Furthermore, ADAR-mediated modification of exon 12A generates an enhancer for the oncogenic splicing factor SRSF1 and consequently promotes the frequency of alternative splicing. Gene expression profiling by RNA-seq revealed that E12A acts distinctly from HNRPLL and regulates a set of growth-related genes, such as cyclin CCND1 and growth factor receptor TGFBR1 Accordingly, silencing E12A expression leads to impaired clonogenic ability and enhanced sensitivity to doxorubicin, thus highlighting the significance of this alternative isoform in tumor cell survival. In summary, we present the interplay of RNA editing and splicing as a regulatory mechanism of gene expression and also its physiological relevance. These findings extend our understanding of transcriptional dynamics and provide a mechanistic explanation to the link of RNA editors to tumorigenesis.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Íntrons/genética , Edição de RNA , Antígenos de Superfície/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Células HeLa , Humanos , RNA Mensageiro/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Transcrição Gênica/genética
10.
RNA Biol ; 16(9): 1263-1274, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31135270

RESUMO

The innate immune system is the frontline host protection against pathogens. Effective antiviral immunity is elicited upon recognition of viral RNAs by the host pattern recognition receptors. One of the major viral RNA sensors is retinoic acid inducible gene-1, which triggers the production of interferons (IFNs). In turn, this protective response requires another viral sensor and immunity factor interferon-inducible protein kinase RNA activator (PACT/PRKRA). Here, we report the identification and characterization of a novel antisense PACT gene that expresses a non-coding RNA in a convergent and interferon-inducible manner. Publicly available gene structure and expression data revealed that this gene, that we termed ASPACT, overlaps with the 3' -end of the PACT locus and is highly expressed during viral infection. Our results confirm the IFN-ß-inducibility of ASPACT, which is dependent on STAT-1/2. We further discovered that downregulation of ASPACT impacts both the expression and localization of the PACT transcript. At the transcription level, ChIP and ChIRP assays demonstrated that the ASPACT non-coding RNA occupies distinct chromatin regions of PACT gene and is important for promoter recruitment of the epigenetic silencer HDAC1. In parallel, ASPACT was also found to mediate nuclear retention of the PACT mRNA via direct RNA-RNA interaction, as revealed by RNA antisense purification assay. In summary, our results support the model that the non-coding RNA ASPACT acts as a negative regulator of PACT at multiple levels, and reveal a novel regulator of the viral counteractive response.


Assuntos
RNA Antissenso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Núcleo Celular/metabolismo , Epigênese Genética , Células HEK293 , Células HeLa , Histona Desacetilase 1/metabolismo , Humanos , Imunidade Inata , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Transcrição Gênica
11.
Mol Biol Evol ; 34(10): 2453-2468, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957512

RESUMO

Recent RNA-seq technology revealed thousands of splicing events that are under rapid evolution in primates, whereas the reliability of these events, as well as their combination on the isoform level, have not been adequately addressed due to its limited sequencing length. Here, we performed comparative transcriptome analyses in human and rhesus macaque cerebellum using single molecule long-read sequencing (Iso-seq) and matched RNA-seq. Besides 359 million RNA-seq reads, 4,165,527 Iso-seq reads were generated with a mean length of 14,875 bp, covering 11,466 human genes, and 10,159 macaque genes. With Iso-seq data, we substantially expanded the repertoire of alternative RNA processing events in primates, and found that intron retention and alternative polyadenylation are surprisingly more prevalent in primates than previously estimated. We then investigated the combinatorial mode of these alternative events at the whole-transcript level, and found that the combination of these events is largely independent along the transcript, leading to thousands of novel isoforms missed by current annotations. Notably, these novel isoforms are selectively constrained in general, and 1,119 isoforms have even higher expression than the previously annotated major isoforms in human, indicating that the complexity of the human transcriptome is still significantly underestimated. Comparative transcriptome analysis further revealed 502 genes encoding selectively constrained, lineage-specific isoforms in human but not in rhesus macaque, linking them to some lineage-specific functions. Overall, we propose that the independent combination of alternative RNA processing events has contributed to complex isoform evolution in primates, which provides a new foundation for the study of phenotypic difference among primates.


Assuntos
Processamento Alternativo/genética , Isoformas de RNA/genética , Análise de Sequência de RNA/métodos , Animais , Cerebelo , Evolução Molecular , Éxons , Perfilação da Expressão Gênica , Humanos/genética , Macaca mulatta/genética , RNA/genética , Isoformas de RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Reprodutibilidade dos Testes , Transcriptoma/genética
12.
PLoS Genet ; 11(10): e1005580, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26492166

RESUMO

Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3'UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , MicroRNAs/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Regiões 3' não Traduzidas , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Nucléolo Celular/genética , Tamanho Celular , Proteínas Cromossômicas não Histona/metabolismo , Feminino , MicroRNAs/metabolismo , Imagem Óptica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Vulva/crescimento & desenvolvimento , Vulva/metabolismo
13.
PLoS Genet ; 11(7): e1005391, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26177073

RESUMO

While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.


Assuntos
Evolução Molecular , Genética Populacional , Filogenia , RNA Longo não Codificante/genética , Animais , Sequência Rica em GC/genética , Genoma Humano , Humanos , Macaca mulatta/genética , Fases de Leitura Aberta , Primatas/genética , Splicing de RNA/genética
14.
Mol Biol Evol ; 33(5): 1370-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26882984

RESUMO

Although population genetics studies have significantly accelerated the evolutionary and functional interrogations of genes and regulations, limited polymorphism data are available for rhesus macaque, the model animal closely related to human. Here, we report the first genome-wide effort to identify and visualize the population genetics profile in rhesus macaque. On the basis of the whole-genome sequencing of 31 independent macaque animals, we profiled a comprehensive polymorphism map with 46,146,548 sites. The allele frequency for each polymorphism site, the haplotype structure, as well as multiple population genetics parameters were then calculated on a genome-wide scale. We further developed a specific interface, the RhesusBase PopGateway, to facilitate the visualization of these annotations, and highlighted the applications of this highly integrative platform in clarifying the selection signatures of genes and regulations in the context of the primate evolution. Overall, the updated RhesusBase provides a comprehensive monkey population genetics framework for in-depth evolutionary studies of human biology.


Assuntos
Macaca mulatta/genética , Animais , Evolução Biológica , China , Bases de Dados de Ácidos Nucleicos , Genética Populacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Metagenômica/normas , Análise de Sequência de DNA/métodos
15.
EMBO Rep ; 16(4): 528-38, 2015 04.
Artigo em Inglês | MEDLINE | ID: mdl-25666827

RESUMO

Many causal mutations of intellectual disability have been found in genes involved in epigenetic regulations. Replication-independent deposition of the histone H3.3 variant by the HIRA complex is a prominent nucleosome replacement mechanism affecting gene transcription, especially in postmitotic neurons. However, how HIRA-mediated H3.3 deposition is regulated in these cells remains unclear. Here, we report that dBRWD3, the Drosophila ortholog of the intellectual disability gene BRWD3, regulates gene expression through H3.3, HIRA, and its associated chaperone Yemanuclein (YEM), the fly ortholog of mammalian Ubinuclein1. In dBRWD3 mutants, increased H3.3 levels disrupt gene expression, dendritic morphogenesis, and sensory organ differentiation. Inactivation of yem or H3.3 remarkably suppresses the global transcriptome changes and various developmental defects caused by dBRWD3 mutations. Our work thus establishes a previously unknown negative regulation of H3.3 and advances our understanding of BRWD3-dependent intellectual disability.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Chaperonas de Histonas/genética , Histonas/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Morfogênese/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/metabolismo
16.
Nucleic Acids Res ; 43(Database issue): D849-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25398898

RESUMO

Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes.


Assuntos
Bases de Dados de Proteínas , Proteínas Mutantes/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteoma/genética , Linhagem Celular Tumoral , Humanos , Internet , Mutação
17.
PLoS Genet ; 10(4): e1004274, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722121

RESUMO

Understanding of the RNA editing process has been broadened considerably by the next generation sequencing technology; however, several issues regarding this regulatory step remain unresolved--the strategies to accurately delineate the editome, the mechanism by which its profile is maintained, and its evolutionary and functional relevance. Here we report an accurate and quantitative profile of the RNA editome for rhesus macaque, a close relative of human. By combining genome and transcriptome sequencing of multiple tissues from the same animal, we identified 31,250 editing sites, of which 99.8% are A-to-G transitions. We verified 96.6% of editing sites in coding regions and 97.5% of randomly selected sites in non-coding regions, as well as the corresponding levels of editing by multiple independent means, demonstrating the feasibility of our experimental paradigm. Several lines of evidence supported the notion that the adenosine deamination is associated with the macaque editome--A-to-G editing sites were flanked by sequences with the attributes of ADAR substrates, and both the sequence context and the expression profile of ADARs are relevant factors in determining the quantitative variance of RNA editing across different sites and tissue types. In support of the functional relevance of some of these editing sites, substitution valley of decreased divergence was detected around the editing site, suggesting the evolutionary constraint in maintaining some of these editing substrates with their double-stranded structure. These findings thus complement the "continuous probing" model that postulates tinkering-based origination of a small proportion of functional editing sites. In conclusion, the macaque editome reported here highlights RNA editing as a widespread functional regulation in primate evolution, and provides an informative framework for further understanding RNA editing in human.


Assuntos
Macaca mulatta/genética , Edição de RNA/genética , RNA/genética , Adenosina/genética , Adenosina Desaminase/genética , Animais , Genoma/genética , Transcriptoma/genética
18.
Mol Biol Evol ; 32(12): 3143-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26341297

RESUMO

Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing-a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.


Assuntos
Macaca mulatta/genética , Edição de RNA , RNA Interferente Pequeno/biossíntese , Análise de Sequência de RNA/métodos , Animais , Humanos , Macaca mulatta/metabolismo , Modelos Animais , RNA Interferente Pequeno/genética , Transcriptoma
19.
EMBO J ; 31(7): 1739-51, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22333916

RESUMO

Skeletal myogenesis involves highly coordinated steps that integrate developmental cues at the chromatin of muscle progenitors. Here, we identify Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of muscle-specific gene expression and myoblast differentiation. The mode of action of Mybbp1a was linked to promoter regulation as illustrated by its interaction with MyoD at the genomic regions of silent muscle-specific genes as well as its negative effect on MyoD-mediated transcriptional activity. We propose that Mybbp1a exerts its repressive role by inducing a less permissible chromatin structure following recruitment of negative epigenetic modifiers such as HDAC1/2 and Suv39h1. At the onset of differentiation, Mybbp1a undergoes a promoter disengagement that may be due to the differentiation-responsive, miR-546-mediated downregulation of Mybbp1a expression. Moreover, such alteration gave rise to promoter enrichment of activators and histone acetylation, an epigenetic status amenable to gene activation. Together, these findings unveil a hitherto unrecognized transcriptional co-repressor role of Mybbp1a in proliferating muscle progenitor cells, and highlight an epigenetic mechanism by which Mybbp1a and miR-546 interplay to control myoblast differentiation transition.


Assuntos
Proteínas de Transporte/metabolismo , Inativação Gênica , Desenvolvimento Muscular/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Animais , Proteínas de Transporte/genética , Células Cultivadas , Proteínas de Ligação a DNA , Regulação para Baixo , Expressão Gênica , Humanos , Camundongos , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Fatores de Transcrição
20.
Hum Mutat ; 36(2): 167-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25196204

RESUMO

Next-generation sequencing (NGS) technologies have revolutionized the field of genetics and are trending toward clinical diagnostics. Exome and targeted sequencing in a disease context represent a major NGS clinical application, considering its utility and cost-effectiveness. With the ongoing discovery of disease-associated genes, various gene panels have been launched for both basic research and diagnostic tests. However, the fundamental inconsistencies among the diverse annotation sources, software packages, and data formats have complicated the subsequent analysis. To manage disease-associated NGS data, we developed Vanno, a Web-based application for in-depth analysis and rapid evaluation of disease-causative genome sequence alterations. Vanno integrates information from biomedical databases, functional predictions from available evaluation models, and mutation landscapes from TCGA cancer types. A highly integrated framework that incorporates filtering, sorting, clustering, and visual analytic modules is provided to facilitate exploration of oncogenomics datasets at different levels, such as gene, variant, protein domain, or three-dimensional structure. Such design is crucial for the extraction of knowledge from sequence alterations and translating biological insights into clinical applications. Taken together, Vanno supports almost all disease-associated gene tests and exome sequencing panels designed for NGS, providing a complete solution for targeted and exome sequencing analysis. Vanno is freely available at http://cgts.cgu.edu.tw/vanno.


Assuntos
Software , Curadoria de Dados , Exoma , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA