Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(37): 11512-11519, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230027

RESUMO

Metal-oxo clusters show great promise in lithium ion battery applications as anode materials by virtue of their native nature of well-defined nanostructures and multielectron redox activities. However, their intrinsic unsatisfactory electrical conductivity and tendency to aggregation make them difficult to fully utilize. Herein, a well-dispersed Mn12O12(CH3COO)16(H2O)4 (denoted as Mn12) cluster is constructed by rationally adopting carbon dots (CDs) with nanosize and high conductivity as stabilizers. Thanks to the fully exposed redox sites of Mn12 clusters and additional interfacial energy storage mechanism, the optimized Mn12/CDs-1:20 anode delivers a high specific capacity of 1643 mAh g-1 at 0.2 A g-1 (0.25 C) and exhibits outstanding rate and cycling capabilities. This paper provides a green and efficient paradigm to synthesize well-dispersed manganese-oxo clusters for the first time and builds a new platform for cluster-based energy storage.

2.
Angew Chem Int Ed Engl ; 63(18): e202402095, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38450907

RESUMO

Constructing stable and efficient photocatalysts for H2O2 production is of great importance and is challenging. In this study, the synthesis of three photoactive cyclooctatetrathiophene (COTh)-based porous aromatic frameworks (COTh-PAFs) in an alternating donor-acceptor (D-A) fashion is presented. In combination with a triazine-derived electron acceptor, PAF-363 exhibits high efficiency for the photosynthesis of H2O2 with production rates of 11733 µmol g-1 h-1(with sacrificial agent) and 3930 µmol g-1 h-1 (without sacrificial agent) from water and oxygen under visible light irradiation. Experimental results and theoretical calculations reveal that the charge transfer positions and the O2 adsorption sites in PAF-363 are both concentrated on COTh fragments, which facilitate the H2O2 production through the oxygen reduction reaction (ORR) pathway. This work highlights that the rational design of COTh-PAFs with consideration of D-A direction, charge transfer positions, and O2 adsorption sites provides a feasible access to efficient H2O2 production photocatalysts.

3.
Angew Chem Int Ed Engl ; 63(33): e202405396, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38818672

RESUMO

Reactive oxygen species (ROS) play a crucial role in determining photocatalytic reaction pathways, intermediate species, and product selectivity. However, research on ROS regulation in polymer photocatalysts is still in its early stages. Herein, we successfully achieved series of modulations to the skeleton of Pyrene-alkyne-based (Tetraethynylpyrene (TEPY)) conjugated porous polymers (CPPs) by altering the linkers (1,4-dibromobenzene (BE), 4,4'-dibromobiphenyl (IP), and 3,3'-dibromobiphenyl (BP)). Experiments combined with theoretical calculations indicate that BE-TEPY exhibits a planar structure with minimal exciton binding energy, which favors exciton dissociation followed by charge transfer with adsorbed O2 to produce ⋅O2 -. Thus BE-TEPY shows optimal photocatalytic activity for phenylboronic acid oxidation and [3+2] cycloaddition. Conversely, the skeleton of BP-TEPY is significantly distorted. Its planar conjugation decreases, intersystem crossing (ISC) efficiency increases, which makes it more prone for resonance energy transfer to generate 1O2. Therefore, BP-TEPY displays best photocatalytic activity in [4+2] cycloaddition and thioanisole oxidation. Both above reactant conversion and its product selectivity exceed 99 %. This work systematically reveals the intrinsic structure-activity relationship among the skeleton structure of CPPs, excitonic behavior, and selective generation of ROS, providing new insights for the rational design of highly efficient and selective CPPs photocatalysts.

4.
Angew Chem Int Ed Engl ; 63(40): e202409255, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984684

RESUMO

With the large-scale application of lithium-ion batteries (LIBs), a huge amount of spent LIBs will be generated each year and how to realize their recycling and reuse in a clean and effective way poses a challenge to the society. In this work, using the electrolyte of spent LIBs as solvent, we in situ fluorinate the conductive three-dimensional porous copper foam by a facile solvent-thermal method and then coating it with a cross-linked sodium alginate (SA) layer. Benefiting from the solid-electrolyte interphase (SEI) that accommodating the volume change of internal CuF2 core and SA layer that inhibiting the dissolution of CuF2, the synthesized CuF2@void@SEI@SA cathode with a pomegranate-like structure (yolk-shell) exhibits a large reversible capacity of ~535 mAh g-1 at 0.05 A g-1 and superb cycling stability. This work conforms to the development concept of green environmental protection and comprehensively realizes the unity of environmental, social and economic benefits.

5.
Chemistry ; 29(11): e202203419, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36396601

RESUMO

To realize the direct and full use of the widely distributed solar energy, developing novel materials with superb photothermal conversion capability is essential. Although heteropoly blue has intrinsic outstanding solar absorption and photothermal conversion properties, its spectral absorption in the infrared region is weak. Here, composites of heteropoly blue and carbon nanotubes (HPB/CNTs) are synthesized depending on electrostatic interactions by facile microwave sonication and freeze-drying. The doped CNTs can dramatically improve the spectral absorption performance of HPB ontology in the infrared region. As a result, the light absorption of the optimized HPB/CNTs (20 %) reaches more than 95 % in the range of 200-2400 nm, showing promising prospects as high-performance photothermal conversion material in the applications of solar desalination and wastewater treatment.

6.
BMC Neurol ; 23(1): 376, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858051

RESUMO

BACKGROUND: Endovascular recanalization in patients with symptomatic nonacute intracranial large artery occlusion (ILAO) has been reported to be feasible, but technically challenging. This study aimed to determine the predictors of successful endovascular recanalization in patients with symptomatic nonacute ILAO. METHODS: The outcomes of endovascular recanalization attempts performed in 70 consecutive patients showing symptomatic nonacute ILAO with hemodynamic cerebral ischemia between January 2016 to December 2022 were reviewed. Potential variables, including clinical and radiological characteristics related to technical success, were collected. Univariate analysis and multivariate logistic regression were performed to identify predictors of successful recanalization for nonacute ILAO. RESULTS: Technically successful recanalization was achieved in 57 patients (81.4%). The periprocedural complication rate was 21.4% (15 of 70), and the overall 30-day morbidity and mortality rates were 7.1% (5 of 70) and 2.9% (2 of 70), respectively. Univariate analysis showed that successful recanalization was associated with occlusion duration, stump morphology, occlusion length, slow distal antegrade flow sign, and the presence of bridging collateral vessels. Multivariate analysis showed that occlusion duration ≤ 3 months (odds ratio [OR]: 22.529; 95% confidence interval [CI]: 1.636-310.141), tapered stump (OR: 7.498; 95% CI: 1.533-36.671), and occlusion length < 10 mm (OR: 7.049; 95% CI: 1.402-35.441) were independent predictive factors for technical success of recanalization. CONCLUSIONS: Occlusion duration ≤ 3 months, tapered stump, and occlusion length < 10 mm were independent positive predictors of technical success of endovascular recanalization for symptomatic nonacute ILAO. These findings may help predict the likelihood of successful recanalization in patients with symptomatic nonacute ILAO and also provide a reference for the selection of appropriate patients. Further prospective and multicenter studies are required to validate our findings.


Assuntos
Arteriopatias Oclusivas , Procedimentos Endovasculares , Humanos , Resultado do Tratamento , Artérias , Arteriopatias Oclusivas/diagnóstico por imagem , Arteriopatias Oclusivas/cirurgia , Estudos Retrospectivos
7.
Angew Chem Int Ed Engl ; 62(45): e202312020, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728941

RESUMO

Single-ion conductive electrolytes can largely eliminate electrode polarization, reduce the proportion of anion migration and inhibit side reactions in batteries. However, they usually suffer from insufficient ion conductivity due to the strong interaction between cations and cationic receptors. Here we report an ultrafast light-responsive covalent organic frameworks (COF) with sulfonic acid groups modification as the acrylamide polymerization initiator. Benefiting from the reduced electrostatic interaction between Zn2+ and sulfonic acid groups through solvation effects, the as-prepared COF-based hydrogel electrolyte (TCOF-S-Gel) receives an ion conductivity of up to 27.2 mS/cm and Zn2+ transference number of up to 0.89. In addition, sufficient hydrogen bonds endow the single-ion conductive TCOF-S-Gel electrolyte to have good water retention and superb mechanical properties. The assembled Zn||TCOF-S-Gel||MnO2 full zinc-ion battery exhibits high discharge capacity (248 mAh/g at 1C), excellent rate capability (90 mAh/g at 10C) and superior cycling performance. These enviable results enlist the instantaneously photocured TCOF-S-Gel electrolyte to be qualified to large-scaled flexible high-performance quasi-solid-state zinc-ion batteries.

8.
Angew Chem Int Ed Engl ; 62(30): e202305843, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37232089

RESUMO

The development of a new electrolytic water hydrogen production coupling system is the key to realize efficient and low-cost hydrogen production and promote its practical application. Herein, a green and efficient electrocatalytic biomass to formic acid (FA) coupled hydrogen production system has been developed. In such a system, carbohydrates such as glucose are oxidized to FA using polyoxometalates (POMs) as the redox anolyte, while H2 is evolved continuously at the cathode. Among them, the yield of glucose to FA is as high as 62.5 %, and FA is the only liquid product. Furthermore, the system requires only 1.22 V to drive a current density of 50 mA cm-2 , and the Faraday efficiency of hydrogen production is close to 100 %. Its electrical consumption is only 2.9 kWh Nm-3 (H2 ), which is only 69 % of that of traditional electrolytic water. This work opens up a promising direction for low-cost hydrogen production coupled with efficient biomass conversion.

9.
Inorg Chem ; 61(18): 6910-6918, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35473356

RESUMO

Four polyoxometalate (POM)-based organic-inorganic hybrid compounds, namely, (H2bimb)6H8[((Mn(H2O)3(µ-bimb))0.5(Mn(H2O)4)(Mn(H2O)5)0.5(AgP5W30O110))2]·29H2O (1), [(Cu(Hbimb)(H2O)2(µ-bimb)Cu(Hbimb)(H2O))(Cu(H2O)2(µ-bimb)Cu(H2O)3)((Cu(H2O)2)0.5(µ-bimb)(Cu(H2O)3)0.5)H2(AgP5W30O110)]·12.5H2O (2), (H2bimb)2H[(Zn(Hbimb)(H2O)4(Zn(Hbimb)(H2O)2)0.5)2(AgP5W30O110)]·12H2O (3), and (H2bimb)3H2[(Ag(H2O)2)0.5(Ag(Hbimb)Ag(Hbimb)(µ-bimb)Ag)(Ag(H2O)2)0.5(AgP5W30O110)]·7H2O (4) (bimb = 1,4-bis(1H-imidazol-1-yl)benzene), were hydrothermally synthesized using a silver-centered Preyssler-type POM K14[AgP5W30O110]·18H2O (abbreviated as K-{AgP5W30}) as a precursor. In 1-4, {AgP5W30} clusters integrating the merits of Ag+ and {P5W30} units are modified by different transition metal (TM)-organic fragments to extend the structures into three-dimensional frameworks. As nonenzymatic electrochemical sensor materials, 1-4 show good electrocatalytic activity, high sensitivity, and a low detection limit for detecting hydrogen peroxide (H2O2); 4 possesses the highest sensitivity of 195.47 µA·mM-1·cm-2 for H2O2 detection. Most importantly, the average level of H2O2 detection of these {AgP5W30}-based materials outperforms that of Na-centered Preyssler-type {NaP5W30} and most Keggin-type POM-based materials. The performances of such {AgP5W30} materials mainly stem from the unique advantage of high-negatively charged {AgP5W30} clusters together with the good synergistic effect between {AgP5W30} and TMs. This work expands on the research of high-efficiency POM-based nonenzymatic electrochemical H2O2 sensors using Ag-containing POMs with high negative charges, which is also of great theoretical and practical significance to carry out health monitoring and environmental analysis.


Assuntos
Peróxido de Hidrogênio , Prata , Ânions , Peróxido de Hidrogênio/química , Polieletrólitos , Prata/química
10.
Inorg Chem ; 61(27): 10442-10453, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35758283

RESUMO

The development of visible-light photocatalysts for the selective oxidative coupling of amines to imines is an area of great interest. Herein, four hybrid compounds based on polyoxometalate anions and tris(bipyridine)ruthenium cations, Ru(bpy)3[M6O19] (M = Mo, W) 1-2, [Ru(bpy)3]2[Mo8O26] 3, [Ru(bpy)3]2[W10O32] 4, are prepared and characterized by X-ray diffraction (single-crystal and powder), elemental analysis, energy-dispersive X-ray spectroscopy (EDS) analysis, infrared (IR) spectroscopy, and solid diffuse reflective spectroscopy. Single-crystal structural analysis indicates that polyoxometalate anions and tris(bipyridine)ruthenium cations interact with each other through extensive hydrogen bonds in these compounds. These hybrid species with strong visible-light-harvesting abilities and suitable photocatalytic energy potentials show excellent photocatalytic activity and selectivity for the oxidation of amines to imines at room temperature in air as an oxidant. Among them, compound 1 with the [Mo6O19]2- anion has the highest catalytic activity, which can swiftly convert >99.0% of benzylamine into N-benzylidenebenzylamine with a selectivity of 98.0% in 25 min illumination by a 10 W 445 nm light-emitting diode (LED). Its turnover frequency reaches 392 h-1, which is not only better than the homogeneous catalyst [Ru(bpy)3]Cl2 but also much superior to those achieved over most of reported heterogeneous catalysts. Moreover, it shows a wide generality for various aromatic amines, accompanied by the advantages of good recyclability and stability. The photocatalytic oxidation mechanism of amines to the corresponding imines over polyoxometalate-based hybrid compounds was fully investigated.

11.
Angew Chem Int Ed Engl ; 61(29): e202202914, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35543927

RESUMO

Active species regulation is a key scientific issue that essentially determines the selectivity and activity of a photocatalyst. Herein, CuI -bridged tetrakis(4-ethynylphenyl)ethene aggregates (T4 EPE-Cu) with photo-regulated 1 O2 and O2 .- generation were demonstrated for selective photocatalytic aerobic oxidation. In this system, transient photovoltage combined with the density functional theory calculations confirmed that Cu-alkynyl was the main oxygen activation site. The adsorbed O2 tends to produce O2 .- because of the potential well effect of Cu-alkynyl under high-energy light excitation. But under low-energy light, O2 tends to produce 1 O2 via resonance energy transfer with Cu-alkynyl. For α-terpinene oxidation, the ratios of 1 O2 products to O2 .- products can be controlled from 1.3 (380 nm) to 10.7 (600 nm). Furthermore, T4 EPE-Cu exhibited ultrahigh photocatalytic performance for Glaser coupling and benzylamine oxidation, with a conversion and selectivity of over 99 %.

12.
Angew Chem Int Ed Engl ; 60(21): 11910-11918, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33605019

RESUMO

Efficient coupling solar energy conversion and N2 fixation by photocatalysis has been shown promising potentials. However, the unsatisfied yield rate of NH3 curbs its forward application. Defective typical perovskite, BaTiO3 , shows remarkable activity under an applied magnetic field for photocatalytic N2 fixation with an NH3 yield rate exceeding 1.93 mg L-1 h-1 . Through steered surface spin states and oxygen vacancies, the electromagnetic synergistic effect between the internal electric field and an external magnetic field is stimulated. X-ray absorption spectroscopy and density functional theory calculations reveal the regulation of electronic and magnetic properties through manipulation of oxygen vacancies and inducement of Lorentz force and spin selectivity effect. The electromagnetic effect suppresses the recombination of photoexcited carriers in semiconducting nanomaterials, which acts synergistically to promote N2 adsorption and activation while facilitating fast charge separation under UV-vis irradiation.

13.
Angew Chem Int Ed Engl ; 60(11): 6076-6085, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296135

RESUMO

Fabricating proton exchange membranes (PEMs) with high ionic conductivity and ideal mechanical robustness through regulation of the membrane microstructures achieved by molecular-level hybridization remains essential but challenging for the further development of high-performance PEM fuel cells. In this work, by precisely hybridizing nano-scaled bismuth oxide clusters into Nafion, we have fabricated the high-performance hybrid membrane, Nafion-Bi12 -3 %, which showed a proton conductivity of 386 mS cm-1 at 80 °C in aqueous solution with low methanol permeability, and conserved the ideal mechanical and chemical stabilities as PEMs. Moreover, molecular dynamics (MD) simulation was employed to clarify the structural properties and the assembly mechanisms of the hybrid membrane on the molecular level. The maximum current density and power density of Nafion-Bi12 -3 % for direct methanol fuel cells reached to 432.7 mA cm-2 and 110.2 mW cm-2 , respectively. This work provides new insights into the design of versatile functional polymer electrolyte membranes through polyoxometalate hybridization.

14.
Arch Biochem Biophys ; 663: 183-191, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639170

RESUMO

Increasing evidence suggests that long non-coding RNAs (lncRNAs) are implicated with chemoresistance of cancers. However, their functional role and molecular mechanisms in colorectal cancer (CRC) chemoresistance are still largely unclear. In this work, we aimed to investigate the functional role of lncRNA cancer susceptibility candidate 15 (CASC15) in oxaliplatin (OXA) resistance of CRC and reveal the underlying molecular mechanism. Our results discovered that CASC15 was up-regulated in OXA-resistant CRC tissues and cells. Patients with high CASC15 expression level had a poor prognosis. CASC15 knockdown re-sensitized HT29/OXA and HCT116/OXA cells to OXA. Moreover, CASC15 could act as a competing endogenous RNA (ceRNA) to de-repress ABCC1 expression through sponging miR-145. miR-145 overexpression or ABCC1 knockdown could mimic the functional role of down-regulated CACS15 in OXA resistance, which was counteracted by CASC15 overexpression. Furthermore, CASC15 knockdown facilitated OXA sensitivity of OXA-resistant CRC cells in vivo. In summary, CASC15 silencing overcame OXA resistance of CRC by regulating miR-145/ABCC1 axis, providing a potential therapeutic target for CRC chemoresistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia , MicroRNAs/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Oxaliplatina/farmacologia , RNA Longo não Codificante/fisiologia , Animais , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Técnicas de Silenciamento de Genes , Células HCT116 , Células HT29 , Xenoenxertos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Oxaliplatina/uso terapêutico , Prognóstico
15.
Phys Chem Chem Phys ; 21(31): 17163-17169, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31342023

RESUMO

Two-dimensional (2D) heteromaterials with large interface contact and intimate interfacial charge transition have been considered to be an ideal model for constructing highly efficient photocatalysts. However, few studies have reported on these 2D heterojunctions. Herein, we report a series of new 2D heterojunctions comprising polyimide (PI) and perylene-3,4,9,10-tetracarboxylic dianhydride (TD). These heterojunctions, denoted as PI-TDx (where x represents the amount of TD added, i.e., x = 0.13, 0.18, 0.27, 0.54, and 1.08 g), were prepared by the solid thermal copolymerization of melamine (MA), pyromellitic dianhydride (PD), and different amounts of TD. FT-IR spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy analyses were used to verify the 2D heterojunction structure. Photocatalytic experiments reveal that PI-TDx exhibit excellent and stable photocatalytic performance for the degradation of the organic dyes rhodamine B (RhB) and methyl violet (MV), as well as for the photoreduction of Cr(vi), under visible-light irradiation. Among the samples, PI-TD0.18 exhibits the best photocatalytic performance. Its activity is about 2.7 times and 7.5 times higher than that of individual PIMP (formed by MA and PD) and PIMT (formed by MA and TD) for RhB degradation, respectively. Notably, PI-TD0.18 retains a certain photocatalytic activity under light irradiation at 600 nm. The photocatalytic-mechanism study demonstrates that PI-TD0.18 has a classic type-II heterojunction. Its 2D heterojunction greatly enhances the visible-light absorption of the composites and effectively suppresses the radiation recombination of photogenerated carriers, thereby improving its charge transfer and separation abilities and providing excellent photocatalytic performance. This work may serve as an important reference for the design and construction of new highly efficient 2D organic conjugated-polymer photocatalysts.


Assuntos
Poluentes Ambientais/química , Perileno/análogos & derivados , Perileno/química , Resinas Sintéticas/química , Catálise , Cromo/química , Corantes/química , Violeta Genciana/química , Luz , Oxirredução , Processos Fotoquímicos , Rodaminas/química , Propriedades de Superfície
16.
Neuroradiology ; 61(7): 833-842, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31044262

RESUMO

PURPOSE: This study aimed to report the clinical findings and initial clinical experience of endovascular recanalization for symptomatic subacute/chronic intracranial large artery occlusion (ILAO) of the anterior circulation. METHODS: From October 2015 to December 2017, 13 patients with symptomatic subacute/chronic ILAO of the anterior circulation were enrolled in this study and underwent endovascular recanalization. We collected the initial procedural results, including the rate of successful recanalization and periprocedural complications, and data pertaining to angiographic and clinical follow-up. RESULTS: Recanalization was successful in 11 of 13 patients (84.6%). Intraoperative complications occurred in four cases, including symptomatic distal embolism in three cases; one of which was simultaneously complicated with artery dissection. Intracerebral hemorrhage occurred in one case. Eleven patients underwent angiographic follow-up, and 12 patients underwent clinical follow-up. The results of the angiography follow-up (mean 6 ± 3.29 months) showed that in-stent restenosis occurred in one of the 11 successfully recanalized patients. However, the artery was occluded again in the patient who achieved thrombolysis in cerebral infarction (TICI) grade of 2a after treatment. Clinical follow-up (mean 5.8 ± 2.25 months) showed no recurrence of transient ischemic attack (TIA) or stroke in ten successfully recanalized cases. However, the patient who developed in-stent stenosis suffered TIA. CONCLUSIONS: Endovascular recanalization for symptomatic subacute/chronic ILAO of anterior circulation is feasible, relatively safe, and efficacious in highly selected cases, improving patients' symptoms in the short-term. However, further larger scale pilot studies are needed to determine the efficacy and long-term outcome associated with this treatment.


Assuntos
Arteriopatias Oclusivas/cirurgia , Artérias Cerebrais/cirurgia , Revascularização Cerebral/métodos , Procedimentos Endovasculares/métodos , Adulto , Idoso , Arteriopatias Oclusivas/diagnóstico por imagem , Angiografia Cerebral , Artérias Cerebrais/diagnóstico por imagem , Doença Crônica , Feminino , Humanos , Complicações Intraoperatórias , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
17.
Small ; 14(42): e1802204, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30239123

RESUMO

A rationally designed oxygen evolution reaction (OER) catalyst with advanced structural and compositional superiority is highly desirable to optimize electrocatalytic performance. Prussian blue analogues (PBAs) with adjustable element compositions and accessible porous structures represent a promising precursor for the preparation of OER catalysts. Herein, oxygen-doped nickel iron phosphide nanocube arrays (Ni2 P/(NiFe)2 P(O) NAs) grown on Ni foam is rationally designed and fabricated from PBAs. The porous structure and the synergistic effect of Ni and Fe enable superior electrocatalytic performance and stability toward the OER in alkaline electrolytes. Density functional theory calculations reveal that Fe-incorporated Ni2 P can generate new active sites on the Fe atoms, and the energy barriers of the intermediates and products are decreased efficiently in the presence of surface doped oxygen, both processes are crucial factors for enhanced catalytic performances. In 1 m KOH, the Ni2 P/(NiFe)2 P(O) NAs afford current densities of 10 and 800 mA cm-2 at overpotentials of 150 and 530 mV, respectively, which outperform the commercial noble metal IrO2 . Ni2 P/(NiFe)2 P(O) NAs also have long-term stability over 100 h at a high current density. The present approach may provide a new avenue for the controlled assembly of nanoarrays for energy storage and conversion applications.

18.
Inorg Chem ; 57(7): 4109-4116, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29533068

RESUMO

Polyoxometalates (POMs) show considerable catalytic performance toward the selective oxidation of alkenes to aldehydes, which is commercially valuable for the production of pharmaceuticals, dyes, perfumes, and fine chemicals. However, the low specific surface area of POMs as heterogeneous catalysts and poor recyclability as homogeneous catalysts have hindered their wide application. Dispersing POMs into metal-organic frameworks (MOFs) for the construction of POM-based MOFs (POMOFs) suggests a promising strategy to realize the homogeneity of heterogeneous catalysis. Herein, we report two new POMOFs with chemical formulas of [Co(BBTZ)2][H3BW12O40]·10H2O (1) and [Co3(H2O)6(BBTZ)4][BW12O40]·NO3·4H2O (2) (BBTZ = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene) for the selective oxidation of alkenes to aldehydes. Compound 1 possesses a non-interpenetrated three-dimensional (3D) cds-type open framework with a 3D channel system. Compound 2 displays a 3D polyrotaxane framework with one-dimensional channels along the [100] direction. In the selective oxidation of styrene into benzaldehyde, compound 1 can achieve a 100% conversion in 4 h with 96% selectivity toward benzaldehyde, which is superior to that of compound 2. A series of control experiments reveal that the co-role of [BW12O40]5- and Co2+ active center as well as a more open framework feature co-promote the catalytic property of the POMOFs in this case. This work may suggest a new option for the development of POMOF catalysts in the selective oxidation of alkenes.

19.
Radiology ; 284(1): 191-199, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28234561

RESUMO

Purpose To evaluate the diagnostic accuracy of aneurysm detection and the fidelity of morphologic characterization of three-dimensional (3D) time-of-flight (TOF) magnetic resonance (MR) angiography at 3.0 T in patients with a Glasgow coma score of 15 and noncontrast material-enhanced computed tomography (CT) findings that showed acute nontraumatic subarachnoid hemorrhage. Materials and Methods The institutional review board approved this prospective study, and patients provided informed consent. A total of 277 patients who had not experienced trauma but in whom nonenhanced CT showed subarachnoid hemorrhage, who had a Glasgow coma score of 15, and who underwent both 3D TOF MR angiography and digital subtraction angiography (DSA) (the reference standard) were included. Three observers who were blinded to clinical and DSA results independently analyzed all 3D TOF MR angiographic data sets. The receiver operating characteristic curve was applied to analysis of the detection of aneurysms with 3D TOF MR angiography by using patient- and aneurysm-based evaluations. Multivariate logistic regression analysis was performed to identify aneurysm-specific variables, including size, shape (daughter sac/lobulation/margin), neck width (wide if > 4 mm or if fundus-to-neck ratio was < 2), and relation to adjacent artery, that significantly affected morphologic assessment with 3D TOF MR angiography. Results Aneurysms were depicted with DSA in 225 patients. In patient- and aneurysm-based evaluations, respectively, 3D TOF MR angiography yielded accuracies of 96.8% (268 of 277) and 96.6% (309 of 320), sensitivities of 98.2% (219 of 223) and 98.1% (260 of 265), specificities of 91% (49 of 54) and 89% (49 of 55), positive predictive values of 97.8% (219 of 224) and 97.7% (260 of 266), and negative predictive values of 92% (49 of 53) and 91% (49 of 54). Accuracy of display of morphologic features was 92.5% (236 of 255) for size, 86.3% (220 of 255) for neck width, 94.5% for shape (241 of 255), and 96.9% (247 of 255) for relationship to adjacent vessel. Width of aneurysm neck was the only variable that significantly affected the morphologic assessment of 3D TOF MR angiography (odds ratio, 0.378; 95% confidence interval: 0.337, 8.347; P = .004). Conclusion Three-dimensional TOF MR angiography can accurately depict cerebral aneurysms and accurately display their morphologic features in stable patients with subarachnoid hemorrhage and a Glasgow coma score of 15. © RSNA, 2017.


Assuntos
Angiografia Cerebral/métodos , Angiografia por Ressonância Magnética/métodos , Hemorragia Subaracnóidea/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiografia Digital , Feminino , Escala de Coma de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade
20.
J Am Chem Soc ; 138(18): 5897-903, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27094048

RESUMO

Mimicking proton conduction mechanism of Nafion to construct novel proton-conducting materials with low cost and high proton conductivity is of wide interest. Herein, we have designed and synthesized a cationic covalent organic framework with high thermal and chemical stability by combining a cationic monomer, ethidium bromide (EB) (3,8-diamino-5-ethyl-6-phenylphenanthridinium bromide), with 1,3,5-triformylphloroglucinol (TFP) in Schiff base reactions. This is the first time that the stable cationic crystalline frameworks allowed for the fabrication of a series of charged COFs (EB-COF:X, X = F, Cl, Br, I) through ion exchange processes. Exchange of the extra framework ions can finely modulate the COFs' porosity and pore sizes at nanoscale. More importantly, by introducing PW12O40(3-) into this porous cationic framework, we can greatly enhance the proton conductivity of ionic COF-based material. To the best of our knowledge, EB-COF:PW12 shows the best proton conductivity at room temperature among ever reported porous organic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA