Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 63(12): e1801402, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30913372

RESUMO

SCOPE: Conjugated linoleic acid (CLA), a bioactive substance predominantly found in ruminant products, improves insulin resistance and exhibits anti-inflammatory activity. The chief objective of the study is to investigate the effects and potential mechanisms of CLA on high fructose-induced hyperuricemia and renal inflammation. METHODS AND RESULTS: Hyperuricemia and renal inflammation are induced in rats by 10% fructose. Hyperuricemia, insulin resistance, and renal inflammation are evaluated. CLA potently ameliorates fructose-induced hyperuricemia with insulin resistance and significantly reduces the levels of inflammation factors in serum and kidney. It reverses fructose-induced upregulation of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in the kidney. Moreover, CLA dramatically inhibits the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Additionally, CLA suppresses toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling activation to inhibit nuclear factor-kB (NF-kB) signaling in the kidney of fructose-fed rats. CONCLUSION: CLA ameliorates hyperuricemia along with insulin resistance and renal inflammatory, which may be associated with the suppression of renal GLUT9 and URAT1 in fructose-fed rats. Its molecular mechanism may be related to the inhibition of NLRP3 inflammasome and TLR4/MyD88 signaling pathway. Therefore, CLA may be a promising candidate for preventing fructose-induced hyperuricemia and renal inflammation.


Assuntos
Frutose/administração & dosagem , Hiperuricemia/tratamento farmacológico , Inflamassomos/fisiologia , Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Receptor 4 Toll-Like/fisiologia , Animais , Proteínas de Transporte de Ânions/antagonistas & inibidores , Ácidos Linoleicos Conjugados/uso terapêutico , Masculino , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
2.
RSC Adv ; 8(43): 24470-24476, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539210

RESUMO

The abuse of fructose in daily diet may cause cardiovascular diseases that seriously threaten human health, and both safe and efficient solutions need to be developed. We investigated whether apigenin can prevent the harmful impact of excessive fructose on cardiovascular events. Based on the reduction of percentage of body fat and systolic pressure as well as the improvements in insulin resistance, lipid metabolism, and pathological injury to the thoracic aorta, we suggested that high levels of fructose cause vascular injury and metabolic disorders, which can be improved to some extent by using apigenin. Fundamentally, apigenin down-regulates levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and glucose transporter 1 (GLUT1), which increase with high concentrations of fructose. Moreover, the inflammation and asymmetric dimethylarginine (ADMA) levels increased in fructose group, but they decreased when the rats were fed with apigenin. The results suggest that PI3K/AKT/GLUT1 may have potential for alleviating cardiovascular injury, and apigenin can be an excellent candidate for supplements to ameliorate cardiovascular diseases related to high fructose consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA