Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 199, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28228130

RESUMO

BACKGROUND: The floral transition plays a vital role in the life of ornamental plants. Despite progress in model plants, the molecular mechanisms of flowering regulation remain unknown in perennial plants. Rosa chinensis 'Old Blush' is a unique plant that can flower continuously year-round. In this study, gene expression profiles associated with the flowering transition were comprehensively analyzed during floral transition in the rose. RESULTS: According to the transcriptomic profiles, 85,663 unigenes and 1,637 differentially expressed genes (DEGs) were identified, among which 32 unigenes were involved in the circadian clock, sugar metabolism, hormone, and autonomous pathways. A hypothetical model for the regulation of floral transition was proposed in which the candidate genes function synergistically the floral transition process. Hormone contents and biosynthesis and metabolism genes fluctuated during the rose floral transition process. Gibberellins (GAs) inhibited rose floral transition, the content of GAs gradually decreased and GA2ox and SCL13 were upregulated from vegetative (VM) meristem to floral meristem (FM). Auxin plays an affirmative part in mediating floral transition, auxin content and auxin-related gene expression levels were gradually upregulated during the floral transition of the rose. However, ABA content and ABA signal genes were gradually downregulated, suggesting that ABA passively regulates the rose floral transition by participating in sugar signaling. Furthermore, sugar content and sugar metabolism genes increased during floral transition in the rose, which may be a further florigenic signal that activates floral transition. Additionally, FRI, FY, DRM1, ELIP, COP1, CO, and COL16 are involved in the circadian clock and autonomous pathway, respectively, and they play a positively activating role in regulating floral transition. Overall, physiological changes associated with genes involved in the circadian clock or autonomous pathway collectively regulated the rose floral transition. CONCLUSIONS: Our results summarize a valuable collective of gene expression profiles characterizing the rose floral transition. The DEGs are candidates for functional analyses of genes affecting the floral transition in the rose, which is a precious resource that reveals the molecular mechanism of mediating floral transition in other perennial plants.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Rosa/genética , Transcriptoma , Metabolismo dos Carboidratos , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Redes e Vias Metabólicas , Modelos Biológicos , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/metabolismo , Rosa/metabolismo
2.
Sci Rep ; 7(1): 15437, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133839

RESUMO

Old Chinese garden roses are the foundation of the modern rose, which is one of the best-selling ornamental plants. However, the horticultural grouping and evolution of old Chinese garden roses are unclear. Simple sequence repeat (SSR) markers were employed to survey genetic diversity in old Chinese garden roses and genetic differentiation was estimated among different rose groups. Fluorescence in situ hybridization was used to study the physical localization of 5 S rDNA genes and a karyotype analysis was performed. The SSR data suggest that old Chinese garden roses could be divided into Old Blush group, Odorata group and Ancient hybrid China group. The Old Blush group had the most primitive karyotype. The Ancient hybrid China group and modern rose had the most evolved karyotypes and the highest genetic diversity. During the evolution of rose cultivars, 5 S rDNA increased in number, partially weakened in signal intensity and exhibited variation in distance from the centromere. In conclusion, rose cultivars evolved from the Old Blush Group to the Odorata group, the Ancient Hybrid China group and the modern rose. This work provides a basis for the collection, identification, conservation and innovation of rose germplasm resources.


Assuntos
Cromossomos de Plantas/genética , DNA de Plantas/genética , Evolução Molecular , Repetições de Microssatélites/genética , Rosa/genética , Flores/genética , Jardinagem , Variação Genética , Hibridização in Situ Fluorescente , Cariótipo , Filogenia , Melhoramento Vegetal , RNA Ribossômico 5S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA