Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Transl Med ; 22(1): 543, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844930

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor, and glutamine is vital for tumor cells. The role of glutamine transporter SLC1A5 in tumor progression and transarterial chemoembolization (TACE) efficacy is under study. This research seeks to determine the impact of SLC1A5 expression on the prognosis and TACE efficacy of HCC and elucidate its mechanisms. METHODS: SLC1A5 expression in HCC, correlation with patient outcomes, and response to TACE were studied in an open access liver cancer dataset and confirmed in our cohort. Additionally, the correlation between SLC1A5 expression and hypoxia, angiogenesis and immune infiltration was analyzed and verified by immunohistochemistry, immunofluorescence and transcriptome sequencing. Liver cancer cell lines with SLC1A5 expression knockdown or overexpression were constructed, and cell proliferation, colony formation, apoptosis, migration and drug sensitivity as well as in vivo xenograft tumor were measured. A gene set enrichment analysis was conducted to determine the signaling pathway influenced by SLC1A5, and a western blot analysis was performed to detect protein expression alterations. RESULTS: SLC1A5 expression was higher in HCC tissue and associated with poor survival and TACE resistance. Hypoxia could stimulate the upregulation of glutamine transport, angiogenesis and SLC1A5 expression. The SLC1A5 expression was positively correlated with hypoxia and angiogenesis-related genes, immune checkpoint pathways, macrophage, Tregs, and other immunosuppressive cells infiltration. Knockdown of SLC1A5 decreased proliferation, colony formation, and migration, but increased apoptosis and increased sensitivity to chemotherapy drugs. Downregulation of SLC1A5 resulted in a decrease in Vimentin and N-cadherin expression, yet an increase in E-cadherin expression. Upregulation of SLC1A5 increased Vimentin and N-cadherin expression, while decreasing E-cadherin. Overexpression of ß-catenin in SLC1A5-knockdown HCC cell lines could augment Vimentin and N-cadherin expression, suppress E-cadherin expression, and increase the migration and drug resistance. CONCLUSIONS: Elevated SLC1A5 was linked to TACE resistance and survival shortening in HCC patients. SLC1A5 was positively correlated with hypoxia, angiogenesis, and immunosuppression. SLC1A5 may mediate HCC cell migration and drug resistance via Epithelial-mesenchymal transition (EMT) pathway.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Antígenos de Histocompatibilidade Menor , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/irrigação sanguínea , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Prognóstico , Masculino , Feminino , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Camundongos Nus , Proliferação de Células , Movimento Celular , Apoptose , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/genética
2.
J Hepatol ; 79(1): 126-140, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889359

RESUMO

BACKGROUND & AIMS: The immune landscape of hepatocellular carcinoma (HCC) following transarterial chemoembolisation (TACE) remains to be clarified. This study aimed to characterise the immune landscape following TACE and the underlying mechanism of HCC progression. METHODS: Tumour samples from five patients with treatment-naive HCC and five patients who received TACE therapy were collected and subjected to single-cell RNA sequencing. Another 22 paired samples were validated using immunofluorescence staining and flow cytometry. To clarify the underlying mechanisms, in vitro co-culture experiments and two types of TREM2-KO/WT mouse models, namely, an HCC cell orthotopic injection model and a spontaneous HCC model, were used. RESULTS: A reduced number of CD8+ T cells and an increased number of tumour-associated macrophages (TAMs) were observed in the post-TACE microenvironment. TACE therapy reduced the cluster CD8_C4, which was highly enriched with tumour-specific CD8+ T cells of pre-exhausted phenotype. TREM2 was found to be highly expressed in TAMs following TACE, which was associated with a poor prognosis. TREM2+ TAMs secreted less CXCL9 but more galectin-1 than did TREM2- TAMs. Galectin-1 promoted PD-L1 overexpression in vessel endothelial cells, impeding CD8+ T cell recruitment. TREM2 deficiency also increased CD8+ T cell infiltration, which inhibited tumour growth in both in vivo HCC models. More importantly, TREM2 deficiency enhanced the therapeutic effect of anti-PD-L1 blockade. CONCLUSIONS: This study shows that TREM2+ TAMs play an important role in suppressing CD8+ T cells. TREM2 deficiency increased the therapeutic effect of anti-PD-L1 blockade by enhancing antitumour activity of CD8+ T cells. These findings explain the reasons for recurrence and progression after TACE and provide a new target for HCC immunotherapy after TACE. IMPACT AND IMPLICATIONS: Studying the immune landscape in post-TACE HCC is important to uncover the mechanisms of HCC progression. By using scRNA sequencing and functional assays, we discovered that both the number and function of CD8+ T cells are compromised, whereas the number of TREM2+ TAMs is increased in post-TACE HCC, correlating with worse prognosis. Moreover, TREM2 deficiency dramatically increases CD8+ T cell infiltration and augments the therapeutic efficacy of anti-PD-L1 blockade. Mechanistically, TREM2+ TAMs display lower CXCL9 and increased Gal-1 secretion than do TREM2- TAMs, with Gal-1 mediating the overexpression of PD-L1 in vessel endothelial cells. These results suggest that TREM2 could be a novel immunotherapeutic target for patients treated with TACE in HCC. This provides an opportunity to break the plateau of limited therapeutic effect. This study has the value of understanding the tumour microenvironment of post-TACE HCC and thinking a new strategy of immunotherapy in the field of HCC. It is therefore of key impact for physicians, scientists and drug developers in the field of liver cancer and gastrointestinal oncology.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Galectina 1/uso terapêutico , Linfócitos T CD8-Positivos , Células Endoteliais/patologia , Macrófagos , Microambiente Tumoral
3.
Mol Ther ; 29(5): 1794-1807, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484968

RESUMO

CD39, expressed by tumor-infiltrating lymphocytes (TILs), is a marker to identify tumor-reactive T cells, which is frequently associated with stronger antitumor activity than bystander T cells in a variety of malignancies. Therefore, CD39 could be a promising marker for identifying the active antitumor immune cells used for cellular immunotherapy. To test this possibility, we constructed the hepatitis B virus (HBV) surface protein-specific chimeric antigen receptor T cells (HBVs-CAR-T cells) and generated the personalized tumor-reactive CD8+ T cells. We subsequently assessed their antitumor efficiency mainly with a co-culture system for autologous HBVs+ HCC organoid and T cells. We found that both CD39+ HBVs-CAR-T and CD39+ personalized tumor-reactive CD8+ T cells induced much more apoptosis in HCC organoids. Although the exhaustion status of CAR-T cells increased in CD39+ CAR-T cells, triple knockdown of PD-1, Tim-3, and Lag-3 with shRNAs further enhanced antitumor activity in CD39+ CAR-T cells. Furthermore, these CD39+ CAR-T cells exerted an increased secretion of interferon-γ and stronger antitumor effect in a patient-derived xenograft mouse model. Our findings demonstrated that CD39 could be a promising biomarker to enrich active immune cells and become an indicator marker for evaluating the prognosis of immunotherapy for HCC patients.


Assuntos
Apirase/metabolismo , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , RNA Interferente Pequeno/administração & dosagem , Receptores de Antígenos de Linfócitos T/genética , Animais , Antígenos CD/genética , Carcinoma Hepatocelular/imunologia , Técnicas de Cocultura , Terapia Combinada , Técnicas de Silenciamento de Genes , Células Hep G2 , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Humanos , Interferon gama/metabolismo , Neoplasias Hepáticas/imunologia , Camundongos , Organoides/citologia , Organoides/imunologia , Organoides/virologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína do Gene 3 de Ativação de Linfócitos
4.
Nucleic Acids Res ; 48(16): 8870-8882, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32810272

RESUMO

Extracellular vesicles (EVs) hold great promise for transporting CRISPR-Cas9 RNA-guided endonucleases (RNP) throughout the body. However, the cell-selective delivery of EVs is still a challenge. Here, we designed valency-controlled tetrahedral DNA nanostructures (TDNs) conjugated with DNA aptamer, and loaded the valency-controlled TDNs on EV surface via cholesterol anchoring for specific cell targeting. The targeting efficacy of different ratios of aptamer/cholesterol from 1:3 to 3:1 in TDNs on decorating EVs was investigated. TDNs with one aptamer and three cholesterol anchors (TDN1) efficiently facilitated the tumor-specific accumulation of the EVs in cultured HepG2 cells and human primary liver cancer-derived organoids, as well as xenograft tumor models. The intracellular delivery of RNP by TDN1-EVs successfully realized its subsequent genome editing, leading to the downregulation of GFP or WNT10B in specific cells. This system was ultimately applied to reduce the protein expression of WNT10B, which presented remarkable tumor growth inhibition in vitro, ex vivo and in vivo, and could be extended to other therapeutic targets. The present study provides a platform for the directional display of aptamer on surface labeling and the EVs-based Cas9 delivery, which provides a meaningful idea for future cell-selective gene editing.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Sistemas CRISPR-Cas , Vesículas Extracelulares , Terapia Genética/métodos , Neoplasias Hepáticas/terapia , Nanoestruturas/uso terapêutico , Animais , Feminino , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Fígado/patologia , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Gut ; 70(10): 1965-1977, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33262196

RESUMO

OBJECTIVE: It remains controversial whether tumour mutational burden (TMB) or neoantigens are prognostic markers in hepatocellular carcinoma (HCC). This study aimed to define the function of TMB or neoantigens in antitumour immunotherapy. DESIGN: Neoantigens of patients (n=56) were analysed by pVAC tools with major histocompatibility complex-1 (MHC-I) algorithms based on whole exome sequencing and neoantigens with mutant type IC50 <50 nM were defined as high-affinity neoantigens (HANs). Patients were segregated into HAN-high/low groups by median of HAN value, and overall survival (OS) was analysed. Autologous organoid killing model was developed to clarify the antitumour activity of HANs. RESULTS: The value of HAN showed a better correlation with OS (p=0.0199) than TMB (p=0.7505) or neoantigens (p=0.2297) in patients with HCC and positively correlated with the frequency of CD39+CD8+ tumour infiltrating lymphocytes (TILs). Furthermore, HAN-specific CD8+ T cells were identified in CD39+CD8+ TILs, which showed better antitumour activity in HAN-high versus HAN-low group. In addition, more effective HAN peptides were identified in HAN-high versus HAN-low group. Besides, flow cytometry data showed that in fresh tumour, CD39+PD-1intCD8+ TILs displayed an effector phenotype and stronger antitumour activity in HAN-high versus HAN-low group. More importantly, patients in HAN-high versus HAN-low group showed a better prognosis after anti-PD-1 therapy. CONCLUSIONS: Our study first demonstrates that HAN value positively correlates with better OS in patients with HCC. HANs trigger antitumour activity by activating tumour-reactive CD39+CD8+ T cells, and patients in HAN-high group benefited more from anti-PD-1 therapy than HAN-low group. These findings may provide a novel strategy for personalised antitumour therapies for HCC.


Assuntos
Antígenos de Neoplasias/imunologia , Apirase/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Algoritmos , Biomarcadores Tumorais/imunologia , Carcinoma Hepatocelular/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia , Neoplasias Hepáticas/genética , Organoides/imunologia , Prognóstico
6.
Front Med ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833102

RESUMO

CD39 serves as a crucial biomarker for neoantigen-specific CD8+ T cells and is associated with antitumor activity and exhaustion. However, the relationship between CD39 expression levels and the function of chimeric antigen receptor T (CAR-T) cells remains controversial. This study aimed to investigate the role of CD39 in the functional performance of CAR-T cells against hepatocellular carcinoma (HCC) and explore the therapeutic potential of CD39 modulators, such as mitochondrial division inhibitor-1 (mdivi-1), or knockdown CD39 through short hairpin RNA. Our findings demonstrated that glypican-3-CAR-T cells with moderate CD39 expression exhibited a strong antitumor activity, while high and low levels of CD39 led to an impaired cellular function. Methods modulating the proportion of CD39 intermediate (CD39int)-phenotype CAR-T cells such as mdivi-1 and CD39 knockdown enhanced and impaired T cell function, respectively. The combination of mdivi-1 and CD39 knockdown in CAR-T cells yielded the highest proportion of infiltrated CD39int CAR-T cells and demonstrated a robust antitumor activity in vivo. In conclusion, this study revealed the crucial role of CD39 in CAR-T cell function, demonstrated the potential therapeutic efficacy of combining mdivi-1 with CD39 knockdown in HCC, and provided a novel treatment strategy for HCC patients in the field of cellular immunotherapy.

7.
Transl Oncol ; 27: 101600, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481605

RESUMO

Immunogenic cell death (ICD) and DNA damage response (DDR) are involved in cancer progression and prognosis. Currently, chemotherapy is the first-line treatment for intermediate or advanced hepatocellular carcinoma (HCC), which is mostly based on platinum and anthracyclines that induce DNA damage and ICD. With the treatment of HCC with immune checkpoint inhibitors (ICIs), it is important to understand the molecular characteristics and prognostic values of ICD and DDR-related genes (IDRGs). We aimed to explore the characteristics of ICD and DDR-related molecular patterns, immune status, and the association of immunotherapy and prognosis with IDRGs in HCC. We identified IDRGs in HCC and evaluated their differential expression, biological behaviors, molecular characteristics, immune cell infiltration, and prognostic value. Prognostic IDRGs and subtypes were identified and validated. FFAR3, DDX1, POLR3G, FANCL, ADA, PI3KR1, DHX58, TPT1, MGMT, SLAMF6, and EIF2AK4 were determined as risk factors for HCC, and the biological experiments indicated that high FANCL expression is harmful to the treatment and prognosis. HCC was classified into high- and low-risk groups based on the median values of the risk factors to construct a predictive nomogram. These findings provide novel insights into the treatment and prognosis of HCC and provide a new research direction for HCC.

8.
Acta Pharm Sin B ; 13(2): 632-647, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873191

RESUMO

Cryoablation (CRA) and microwave ablation (MWA) are two main local treatments for hepatocellular carcinoma (HCC). However, which one is more curative and suitable for combining with immunotherapy is still controversial. Herein, CRA induced higher tumoral PD-L1 expression and more T cells infiltration, but less PD-L1highCD11b+ myeloid cells infiltration than MWA in HCC. Furthermore, CRA had better curative effect than MWA for anti-PD-L1 combination therapy in mouse models. Mechanistically, anti-PD-L1 antibody facilitated infiltration of CD8+ T cells by enhancing the secretion of CXCL9 from cDC1 cells after CRA therapy. On the other hand, anti-PD-L1 antibody promoted the infiltration of NK cells to eliminate PD-L1highCD11b+ myeloid cells by antibody-dependent cell-mediated cytotoxicity (ADCC) effect after CRA therapy. Both aspects relieved the immunosuppressive microenvironment after CRA therapy. Notably, the wild-type PD-L1 Avelumab (Bavencio), compared to the mutant PD-L1 atezolizumab (Tecentriq), was better at inducing the ADCC effect to target PD-L1highCD11b+ myeloid cells. Collectively, our study uncovered the novel insights that CRA showed superior curative effect than MWA in combining with anti-PD-L1 antibody by strengthening CTL/NK cell immune responses, which provided a strong rationale for combining CRA and PD-L1 blockade in the clinical treatment for HCC.

9.
Adv Sci (Weinh) ; 10(27): e2302640, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485650

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Patient-derived organoid (PDO) has great potential in precision oncology, but low success rate, time-consuming culture, and lack of tumor microenvironment (TME) limit its application. Mesenchymal stromal cells (MSC) accumulate in primary site to support tumor growth and recruit immune cells to form TME. Here, MSC and peripheral blood mononuclear cells (PBMC) coculture is used to construct HCC organoid-on-a-chip mimicking original TME and provide a high-throughput drug-screening platform to predict outcomes of anti-HCC immunotherapies. HCC-PDOs and PBMC are co-cultured with MSC and Cancer-associated fibroblasts (CAF). MSC increases success rate of biopsy-derived PDO culture, accelerates PDO growth, and promotes monocyte survival and differentiation into tumor-associated macrophages. A multi-layer microfluidic chip is designed to achieve high-throughput co-culture for drug screening. Compared to conventional PDOs, MSC-PDO-PBMC and CAF-PDO-PBMC models show comparable responses to chemotherapeutic or targeted anti-tumor drugs but more precise prediction potential in assessing patients' responses to anti-PD-L1 drugs. Moreover, this microfluidic platform shortens PDO growth time and improves dimensional uniformity of organoids. In conclusion, the study successfully constructs microengineered organoid-on-a-chip to mimic TME for high-throughput drug screening, providing novel platform to predict immunotherapy response of HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Mesenquimais , Humanos , Carcinoma Hepatocelular/terapia , Leucócitos Mononucleares , Neoplasias Hepáticas/terapia , Medicina de Precisão , Organoides , Imunoterapia , Dispositivos Lab-On-A-Chip , Microambiente Tumoral
10.
Cancer Commun (Lond) ; 43(7): 788-807, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37282786

RESUMO

BACKGROUND: Existing treatments for cholangiocarcinoma have poor efficacy. However, chimeric antigen receptor-T (CAR-T) cells are emerging as a potential therapeutic strategy. Solid tumors possess multiple adverse factors in an immunosuppressive microenvironment that impair CAR-T cell infiltration and function. This study aimed to improve the function of CAR-T cells through knock down immune checkpoints and immunosuppressive molecular receptors. METHODS: We evaluated the expression of epidermal growth factor receptor (EGFR) and B7 homolog 3 protein (B7H3) antigens in cholangiocarcinoma tissues using immunohistochemistry and screened specific immune checkpoints in the cholangiocarcinoma microenvironment via flow cytometry. Subsequently, we engineered CAR-T cells targeting EGFR and B7H3 antigens. We simultaneously knocked down immune checkpoints and immunosuppressive molecular receptors in CAR-T cells by constructing two clusters of small hairpin RNAs and evaluated the engineered CAR-T cells for antitumor activity both in vitro, using tumor cell lines and cholangiocarcinoma organoid models, and in vivo, using humanized mouse models. RESULTS: We observed high expression of EGFR and B7H3 antigens in cholangiocarcinoma tissues. EGFR-CAR-T and B7H3-CAR-T cells demonstrated specific anti-tumor activity. We found an abundance of programmed cell death protein 1 (PD-1), T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3), and T cell immunoglobulin and ITIM domain (Tigit) on infiltrated CD8+ T cells in the cholangiocarcinoma microenvironment. We then decreased the expression of these 3 proteins on the surface of CAR-T cells, named PTG-scFV-CAR-T cells. Furthermore, we knocked-down the expression of transforming growth factor beta receptor (TGFßR), interleukin-10 receptor (IL-10R), and interleukin-6 receptor (IL-6R) of PTG-scFV-CAR-T cells. Those cells, named PTG-T16R-scFV-CAR-T cells, potently killed tumor cells in vitro and promoted apoptosis of tumor cells in a cholangiocarcinoma organoid model. Finally, the PTG-T16R-scFv-CAR-T cells showed greater inhibitory effect on tumor growth in vivo, and were superior in prolonging the survival of mice. CONCLUSIONS: Our results revealed that PTG-T16R-scFV-CAR-T cells with knockdown of sextuplet inhibitory molecules exhibited strong immunity against cholangiocarcinoma and long-term efficacy both in vitro and in vivo. This strategy provides an effective and personalized immune cell therapy against cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Receptores de Antígenos Quiméricos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Membrana , Ensaios Antitumorais Modelo de Xenoenxerto , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Receptores ErbB/genética , Imunossupressores , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/terapia , Ductos Biliares Intra-Hepáticos/metabolismo , Imunoglobulinas , Microambiente Tumoral
11.
ACS Appl Mater Interfaces ; 14(6): 7579-7591, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129950

RESUMO

Transcatheter arterial chemoembolization (TACE) is the first choice for patients with intermediate hepatocellular carcinoma (HCC), but clinical applications still face some problems, such as the difficulties in clearing all cancer cells and lack of targeting, which would damage normal liver cells. Recently, photothermal therapy (PTT) and nanodelivery systems have been used to improve the efficacy of TACE. However, most of these strategies achieve only a single function, and the synthesis process is complicated. Here, a simple one-step solvothermal method was used to develop multifunctional nanoparticles (UiO-66/Bi2S3@DOX), which can simultaneously achieve photothermal effects and low pH-triggered DOX release. UiO-66/Bi2S3 exhibited a pH-responsive release behavior and an excellent photothermal effect in a series of in vitro and in vivo studies. Biocompatibility was confirmed by cytotoxicity and hemocompatibility evaluations. The rat N1S1 liver tumor model was established to investigate the therapeutic effect and biosafety of the nanoplatforms using TACE. The results revealed that the combination of TACE and PTT resulted in remarkable tumor growth inhibition, and the histopathological assay further revealed extensive necrosis, downregulated angiogenesis, increased apoptosis, and proliferation in the tumor response. These results demonstrated that this nanosystem platform was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Nanocompostos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Quimioembolização Terapêutica/métodos , Doxorrubicina/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Estruturas Metalorgânicas , Nanocompostos/uso terapêutico , Terapia Fototérmica , Ácidos Ftálicos , Ratos
12.
Front Cell Dev Biol ; 10: 844013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573678

RESUMO

Background: Non-apoptotic programmed cell death, including autophagy, ferroptosis, and pyroptosis, newly discovered in recent years, plays an important role in hepatocellular carcinoma (HCC). So, this study attempted to explore the relationship between non-apoptotic programmed cell death-related genes and the molecular characteristics, tumor microenvironment, and prognosis in HCC patients. Methods: The transcriptomic and clinical data of HCC samples were downloaded from various public datasets, followed by acquiring non-apoptotic programmed cell death-related genes from the database. A gene signature model was then constructed using univariate and multivariate Cox regression analyses and validated in other cohorts as well as our institution sequencing data. Kaplan-Meier survival curves and time-dependent receiver operating characteristic curves were generated to evaluate the model's predictive capability. Furthermore, the relationships among the gene signature, TP53 mutation, stemness, immune status, and responsiveness of transarterial chemoembolization (TACE) were analyzed. Results: The gene signature model was constructed based on five autophagy-, three ferroptosis-, and two pyroptosis-related differentially expressed genes. The model accurately predicted that patients classified as low risk would have better overall survival than high-risk patients, which was robustly consistent with data from other cohorts as well as our institution sequencing data. The comprehensive results indicated that a high-risk index was correlated with a high TP53 mutation rate, high cancer cell stemness, high infiltration of immunosuppressive cells and low immunophenoscore, and low TACE responsiveness of HCC patients. Conclusion: Collectively, the established non-apoptotic programmed cell death-related gene signature was shown to accurately predict prognosis, associated with the TP53 mutation and liver cancer cell stemness, reflect the tumor immune microenvironment, and predict TACE responsiveness in HCC patients.

13.
Front Cell Infect Microbiol ; 12: 1070322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605128

RESUMO

Background: Oral mucositis is the most common complication after radiotherapy of nasopharyngeal carcinoma (NPC). Previous studies had revealed that oral microbiota took great alteration soon after and during radiotherapy. Here, we aimed to investigate if the alteration of oral microbiota was related to delayed healing of oral mucositis after six month of radiotherapy. Methods: We recruited 64 NPC patients and collected samples after six month of radiotherapy. 32 patients were included into normal healing group (N), 22 patients were mild delayed healing group (M), while 10 patients were severe delayed healing group (S). 16S rRNA gene sequencing was used to assess and identify oral microbiota alteration. Results: The diversity of oral microbial communities was not significantly different. Composition of oral microbial was huge different among S group, for the Actinobacteria and Veillonella were significantly increased, which showed significant dysbiosis of the oral microbiome. Functional analysis of metabolic pathways of oral microbiota demonstrated that degradation of organic acids and amino acids were significantly increased in S group. Moreover, phenotype analysis found that relative abundance of aerobic and biofilm formation were higher in S group. We also found the Actinobacteria co-occurred with Veillonellaceae, but anti-occurred with other biofilm oral bacteria. These two biomarkers may be predictable for severe delayed healing of oral mucositis after radiotherapy. Conclusion: This study suggests a potential association between oral microbiome and delayed healing of oral mucositis. The Actinobacteria and Veillonellaceae may be biomarkers in predicting the risks for the severe delayed healing of oral mucositis after radiotherapy of NPC.


Assuntos
Microbiota , Neoplasias Nasofaríngeas , Estomatite , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/complicações , RNA Ribossômico 16S/genética , Estomatite/microbiologia , Estomatite/patologia , Bactérias/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/complicações , Neoplasias Nasofaríngeas/patologia
14.
Acta Pharm Sin B ; 11(7): 1965-1977, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386331

RESUMO

Adoptive cell therapy (ACT) is an emerging powerful cancer immunotherapy, which includes a complex process of genetic modification, stimulation and expansion. During these in vitro or ex vivo manipulation, sensitive cells are inescapability subjected to harmful external stimuli. Although a variety of cytoprotection strategies have been developed, their application on ACT remains challenging. Herein, a DNA network is constructed on cell surface by rolling circle amplification (RCA), and T cell-targeted trivalent tetrahedral DNA nanostructure is used as a rigid scaffold to achieve high-efficient and selective coating for T cells. The cytoprotective DNA network on T-cell surface makes them aggregate over time to form cell clusters, which exhibit more resistance to external stimuli and enhanced activities in human peripheral blood mononuclear cells and liver cancer organoid killing model. Overall, this work provides a novel strategy for in vitro T cell-selective protection, which has a great potential for application in ACT.

15.
Cancer Res Treat ; 52(3): 925-937, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32229792

RESUMO

PURPOSE: This study aimed to investigate the clinicopathologic features and mutational landscape of patients with hepatitis B virus (HBV)-related advanced hepatocellular carcinomas (HCC) undergoing transcatheter arterial chemoembolization (TACE). MATERIALS AND METHODS: From January 2017 to December 2018, 38 patients newly diagnosed with HBV-related advanced HCC were enrolled in the final analysis. Their pathological tissues and corresponding blood samples before TACE treatment were collected for whole-exome sequencing. Response to TACE was evaluated at 1-3 months after two consecutive use of TACE. Predictive factors were analyzed by univariate and multivariate analyses in a bivariate Logistic regression model. Enrichment of related pathways of all driver genes were acquired using the gene set enrichment analysis (GSEA). RESULTS: Among 38 patients, 23 (60.5%) exhibited TACE failure/refractoriness. Patients with TACE failure/refractoriness showed higher frequency of TP53 mutation than their counterparts (p=0.020). Univariate and multivariate analyses showed that only vascular invasion and TP53 mutation were significantly correlated with TACE failure/refractoriness in HBV-related advanced HCC. Of the 16 patients without vascular invasion, eight (50.0%) had TP53 mutations, and TP53 mutation was associated with TACE failure/refractoriness (p=0.041). Moreover, GSEA showed that mitogen-activated protein kinase and apoptosis pathways induced by TP53 mutation were possibly associated with TACE failure/refractoriness. CONCLUSION: Our study suggested that TP53 mutation was independently related with TACE efficacy, which may work via mitogen-activated protein kinase and apoptosis pathways. These findings may provide evidence to help distinguish patients who will particularly benefit from TACE from those who require more personalized therapeutic regimens and rigorous surveillance in HBV-related advanced HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Hepatite B/complicações , Mutação , Recidiva Local de Neoplasia/diagnóstico , Proteína Supressora de Tumor p53/genética , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/virologia , China/epidemiologia , Feminino , Seguimentos , Hepatite B/virologia , Vírus da Hepatite B/isolamento & purificação , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/genética , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA