Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 979-987, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117691

RESUMO

The development of metal-free and recyclable catalysts for significant yet challenging transformations of naturally abundant feedstocks has long been sought after. In this work, we contribute a general strategy of combining the rationally designed crystalline covalent organic framework (COF) with a newly developed chiral frustrated Lewis pair (CFLP) to afford chiral frustrated Lewis pair framework (CFLPF), which can efficiently promote the asymmetric olefin hydrogenation in a heterogeneous manner, outperforming the homogeneous CFLP counterpart. Notably, the metal-free CFLPF exhibits superior activity/enantioselectivity in addition to excellent stability/recyclability. A series of in situ spectroscopic studies, kinetic isotope effect measurements, and density-functional theory computational calculations were also performed to gain an insightful understanding of the superior asymmetric hydrogenation catalysis performances of CFLPF. Our work not only increases the versatility of catalysts for asymmetric catalysis but also broadens the reactivity of porous organic materials with the addition of frustrated Lewis pair (FLP) chemistry, thereby suggesting a new approach for practical and substantial transformations through the advancement of novel catalysts from both concept and design perspectives.

2.
J Am Chem Soc ; 146(26): 17728-17737, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899504

RESUMO

Targeted protein degradation technology holds great potential in biomedicine, particularly in treating tumors and other protein-related diseases. Research on intracellular protein degradation using molecular glues and PROTAC technology is leading, while research on the degradation of membrane proteins and extracellular proteins through the lysosomal pathway is still in the preclinical stage. The scarcity of useful targets is an immense limitation to technological advancement, making it essential to explore novel, potentially effective approaches for targeted lysosomal degradation. Here, we employed the glucose transporter Glut1 as an innovative lysosome-targeting receptor and devised the Glut1-Facilitated Lysosomal Degradation (GFLD) strategy. We synthesized potential Glut1 ligands via reversible addition-fragmentation chain transfer (RAFT) polymerization and acquired antibody-glycooligomer conjugates through bioorthogonal reactions as lysosome-targeting protein degradation molecules, utilized in the management of PD-L1 high-expressing triple-negative breast cancer. The glucose transporter Glut1 as a lysosome-targeting receptor exhibits potential for the advancement of a broader array of medications in the future.


Assuntos
Transportador de Glucose Tipo 1 , Lisossomos , Proteólise , Lisossomos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Ligantes
3.
Angew Chem Int Ed Engl ; 63(22): e202403421, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533686

RESUMO

Adsorptive separation of propyne/propylene (C3H4/C3H6) is a crucial yet complex process, however, it remains a great difficulty in developing porous materials that can meet the requirements for practical applications, particularly with an exceptional ability to bind and store trace amounts of C3H4. Functionalization of pore-partitioned metal-organic frameworks (ppMOFs) is methodically suited for this challenge owing to the possibility of dramatically increasing binding sites on highly porous and confined domains. We here immobilized Lewis-basic (-NH2) and Lewis-acidic (-NO2) sites on this platform. Along with an integrated nature of high uptake of C3H4 at 1 kPa, high uptake difference of C3H4-C3H6, moderated binding strength, promoted kinetic selectivity, trapping effect and high stability, the NH2-decorated ppMOF (NTU-100-NH2) can efficiently produce polymer-grade C3H6 (99.95 %, 8.3 mmol ⋅ g-1) at room temperature, which is six times more than the NO2-decorated crystal (NTU-100-NO2). The in situ infrared spectroscopy, crystallographic analysis, and sequential blowing tests showed that the densely packed amino group in this highly porous system has a unique ability to recognize and stabilize C3H4 molecules. Moving forward, the strategy of organic functionalization can be extended to other porous systems, making it a powerful tool to customize advanced materials for challenging tasks.

4.
J Am Chem Soc ; 145(4): 2386-2394, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36691701

RESUMO

Highly efficient adsorptive separation of propylene from propane offers an ideal alternative method to replace the energy-intensive cryogenic distillation technology. Molecular sieving-type separation via high-performance adsorbents is targeted for superior selectivity, but the limit in adsorption capacity remains a great challenge. Here, we report an oxyfluoride-based ultramicroporous metal-organic framework UTSA-400, [Ni(WO2F4)(pyz)2] (pyz = pyrazine), featuring one-dimensional pore channels that can accommodate the propylene molecules with optimal binding affinity while specifically excluding the propane molecules. The exposed oxide/fluoride pairs in UTSA-400 serve as strong functional sites for strengthened propylene-host interactions, accounting for a significantly enhanced propylene uptake, while the propane molecules are excluded due to the regulated host framework dynamics. The strong propylene binding enables near-saturation of propylene in the pore confinement at ambient conditions, leading to full utilization of pore space and superior packing density. Combined in situ infrared spectroscopy measurements and dispersion-corrected density functional theory calculations clearly unveil the nature of boosted host-guest binding. Direct production of polymer-grade (>99.5%) propylene with remarkable dynamic productivity is demonstrated by column breakthrough experiments. This work presents an example of pore engineering with atomic precision to break the trade-off in adsorptive separation through guest binding optimization.

5.
J Am Chem Soc ; 145(8): 4736-4745, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790398

RESUMO

While trinuclear [FexM3-x(µ3-O)] cluster-based metal-organic frameworks (MOFs) have found wide applications in gas storage and catalysis, it is still challenging to identify the structure of open metal sites obtained through proper activations and understand their influence on the adsorption and catalytic properties. Herein, we use in situ variable-temperature single-crystal X-ray diffraction to monitor the structural evolution of [FexM3-x(µ3-O)]-based MOFs (PCN-250, M = Ni2+, Co2+, Zn2+, Mg2+) upon thermal activation and provide the snapshots of metal sites at different temperatures. The exposure of open Fe3+ sites was observed along with the transformation of Fe3+ coordination geometries from octahedron to square pyramid. Furthermore, the effect of divalent metals in heterometallic PCN-250 was studied for the purpose of reducing the activation temperature and increasing the number of open metal sites. The metal site structures were corroborated by X-ray absorption and infrared spectroscopy. These results will not only guide the pretreatment of [FexM3-x(µ3-O)]-based MOFs but also corroborate spectral and computational studies on these materials.

6.
J Am Chem Soc ; 145(35): 19293-19302, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37616202

RESUMO

Herein, we present a new series of CuI-based hybrid materials with tunable structures and semiconducting properties. The CuI inorganic modules can be tailored into a one-dimensional (1D) chain and two-dimensional (2D) layer and confined/stabilized in coordination frameworks of potassium isonicotinic acid (HINA) and its derivatives (HINA-R, R = OH, NO2, and COOH). The resulting CuI-based hybrid materials exhibit interesting semiconducting behaviors associated with the dimensionality of the inorganic module; for instance, the structures containing the 2D-CuI module demonstrate significantly enhanced photoconductivity with a maximum increase of five orders of magnitude compared to that of the structures containing the 1D-CuI module. They also represent the first CuI-bearing hybrid chemiresistive gas sensors for NO2 with boosted sensing performance and sensitivity at multiple orders of magnitude over that of the pristine CuI. Particularly, the sensing ability of CuI-K-INA containing both 1D- and 2D-CuI modules is comparable to those of the best NO2 chemiresistors reported thus far.

7.
J Am Chem Soc ; 145(32): 18029-18035, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530761

RESUMO

Ferrocene is perhaps the most popular and well-studied organometallic molecule, but our understanding of its structure and electronic properties has not changed for more than 70 years. In particular, all previous attempts of chemically oxidizing pure ferrocene by binding directly to the iron center have been unsuccessful, and no significant change in structure or magnetism has been reported. Using a metal organic framework host material, we were able to fundamentally change the electronic and magnetic structure of ferrocene to take on a never-before observed physically stretched/bent high-spin Fe(II) state, which readily accepts O2 from air, chemically oxidizing the iron from Fe(II) to Fe(III). We also show that the binding of oxygen is reversible through temperature swing experiments. Our analysis is based on combining Mößbauer spectroscopy, extended X-ray absorption fine structure, in situ infrared, SQUID, thermal gravimetric analysis, and energy dispersive X-ray fluorescence spectroscopy measurements with ab initio modeling.

8.
J Am Chem Soc ; 145(18): 10197-10207, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37099724

RESUMO

Coordination networks (CNs) that undergo gas-induced transformation from closed (nonporous) to open (porous) structures are of potential utility in gas storage applications, but their development is hindered by limited control over their switching mechanisms and pressures. In this work, we report two CNs, [Co(bimpy)(bdc)]n (X-dia-4-Co) and [Co(bimbz)(bdc)]n (X-dia-5-Co) (H2bdc = 1,4-benzendicarboxylic acid; bimpy = 2,5-bis(1H-imidazole-1-yl)pyridine; bimbz = 1,4-bis(1H-imidazole-1-yl)benzene), that both undergo transformation from closed to isostructural open phases involving at least a 27% increase in cell volume. Although X-dia-4-Co and X-dia-5-Co only differ from one another by one atom in their N-donor linkers (bimpy = pyridine, and bimbz = benzene), this results in different pore chemistry and switching mechanisms. Specifically, X-dia-4-Co exhibited a gradual phase transformation with a steady increase in the uptake when exposed to CO2, whereas X-dia-5-Co exhibited a sharp step (type F-IV isotherm) at P/P0 ≈ 0.008 or P ≈ 3 bar (195 or 298 K, respectively). Single-crystal X-ray diffraction, in situ powder XRD, in situ IR, and modeling (density functional theory calculations, and canonical Monte Carlo simulations) studies provide insights into the nature of the switching mechanisms and enable attribution of pronounced differences in sorption properties to the changed pore chemistry.

9.
Anal Chem ; 95(42): 15549-15555, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37816133

RESUMO

Plasma membrane (PM)-targeted fluorescent dyes have become an important tool to visualize morphological and dynamic changes in the cell membrane. However, most of these PM dyes are either too large and thus might potentially perturb the membrane and affect its functions or exhibit a short retention time on the cell membrane. The rapid internalization problem is particularly severe for PM dyes based on cationic and neutral hydrophobic fluorescent dyes, which can be easily transported into the cells by transmembrane potential and passive diffusion mechanisms. In this paper, we report a small but highly specific PM fluorescent dye, PM-1, which exhibits a very long retention time on the plasma membrane with a half-life of approximately 15 h. For biological applications, we demonstrated that PM-1 can be used in combination with protein labeling probes to study ectodomain shedding and endocytosis processes of cell surface proteins and successfully demonstrated that native transmembrane human carbonic anhydrase IX (hCAIX) is degraded via the ectodomain shedding mechanism. In contrast, hCAIX undergoes endocytic degradation in the presence of sheddase inhibitors. We believe that PM-1 can be a versatile tool to provide detailed insights into the dynamic processes of the cell surface proteins.


Assuntos
Corantes Fluorescentes , Proteínas de Membrana , Humanos , Corantes Fluorescentes/química , Proteólise , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Transporte Biológico
10.
Anal Chem ; 95(30): 11535-11541, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479992

RESUMO

GPI-anchored folate receptor α (FRα) is an attractive anticancer drug target and diagnosis marker in fundamental biology and medical research due to its significant expression on many cancer cells. Currently, analyses of FRα expression levels are usually achieved using immunological methods. Due to the continual FRα synthesis and degradation, immunological methods are not suitable for studying real-time dynamic activities of FRα in living cells. In this paper, we introduce a rapid and specific FRα protein-labeling fluorescent probe, FR1, to facilitate the study of the dynamics of expression and degradation processes of endogenous FRα in living cells. With this labeling probe, insights on FRα protein lifetime and shedding from the cell surface can be obtained using fluorescence live-cell imaging and electrophoresis techniques. We revealed that FRα undergoes soluble domain release and endocytosis degradation simultaneously. Imaging results showed that most of the membrane FRα are transported to the lysosomes after 2 h of incubation. Furthermore, we also showed that the secretion of a FRα soluble domain into the environment is most likely accomplished by phospholipase. We believe that this protein-labeling approach can be an important tool for analyzing various dynamic processes involving FRα.


Assuntos
Antineoplásicos , Receptor 1 de Folato , Receptor 1 de Folato/metabolismo , Corantes Fluorescentes
11.
Inorg Chem ; 62(40): 16435-16442, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37767939

RESUMO

The detection of toxic, hazardous chemical species is an important task because they pose serious risks to either the environment or human health. Luminescent metal-organic frameworks (LMOFs) as alternative sensors offer rapid and sensitive detection of chemical species. Interactions between chemical species and LMOFs result in changes in the photoluminescence (PL) profile of the LMOFs which can be readily detected using a simple fluorometer. Herein, we report the use of a robust, Zn-based LMOF, [Zn5(µ3-OH)2(adtb)2(H2O)5·5 DMA] (Zn-adtb, LMOF-341), for the selective detection of benzaldehyde. Upon exposure to benzaldehyde, Zn-adtb experiences significant luminescent quenching, as characterized through PL experiments. Photoluminescent titration experiments reveal that LMOF-341 has a detection limit of 64 ppm and a Ksv value of 179 M-1 for benzaldehyde. Furthermore, we study the guest-host interactions that occur between LMOF-341 and benzaldehyde through in situ Fourier transform infrared and computational modeling employing density functional theory. The results show that benzaldehyde interacts more strongly with LMOF-341 compared to formaldehyde and propionaldehyde. Our combined studies also reveal that the mechanism of luminescence quenching originates from an electron-transfer process.

12.
Inorg Chem ; 62(2): 950-956, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36585928

RESUMO

To precisely evaluate the potential of metal-organic frameworks (MOFs) for gas separation and purification applications, it is crucial to understand how various molecules competitively adsorb inside MOFs. In this paper, we combine in situ infrared spectroscopy with ab initio calculations to investigate the mechanisms associated with coadsorption of several small molecules, including CO, NO, and CO2 inside the prototypical structure Ni-MOF-74. Surprisingly, we find that the displacement of CO bound inside Ni-MOF-74 (binding energy of 53 kJ/mol) is readily driven by CO2 exposure, even though CO2 has a noticeably weaker binding energy of only 41 kJ/mol; meanwhile, the significantly more strongly binding NO molecule (90 kJ/mol) is not able to easily displace bound CO inside Ni-MOF74. These results show that single-phase binding energies of a molecule inside the MOF cannot completely describe their interaction with the MOF in the presence of other guest molecules. We unveil many crucial factors, such as the kinetic barrier, partial pressure, secondary binding sites, and guest-host/lateral interactions that control the coadsorption process and, combined with the binding energy, are better descriptors of the behavior and adsorption of gas mixtures inside MOFs.

13.
Am J Otolaryngol ; 44(6): 103985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37442083

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a common type of cancer, and approximately 64 % are in a locally advanced stage at diagnosis. Therefore, neoadjuvant therapy is of great importance. However, traditional neoadjuvant strategies for HNSCC have shown limited efficacy and high complications. And it is urgent to explore new neoadjuvant approaches. With the breakthrough progress of PD-1/PD-L1 axis blockade in recurrent/metastatic HNSCC, neoadjuvant PD-1/PD-L1 axis blockade is gradually showing positive prospects for HNSCC. This study found that the combination of PD-1/PD-L1 axis blockade and chemotherapy or radiotherapy are potential with the overall response rate (ORR) of 45.0 %-96.7 % and 47.6 %-56.7 %, the pathological complete response (pCR) of 16.7 %-42.3 % and 33.3 %-100.0 %, and the main pathological response (MPR) of 26.9 %-74.1 % and 60.0 %-100.0 %, respectively. But the combination of PD-1/PD-L1 axis blockade and CTLA-4 blockade is worth questioning. And we also found pCR and MPR can be early indicators for long-term prognosis and provide five directions for neoadjuvant PD-1/PD-L1 axis blockade in the future.


Assuntos
Carcinoma , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Terapia Neoadjuvante , Inibidores de Checkpoint Imunológico , Recidiva Local de Neoplasia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
14.
Medicina (Kaunas) ; 59(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837411

RESUMO

Objective To evaluate the effectiveness of music therapy for dental anxiety disorders. Methods In order to gather clinical randomized controlled trials comparing the effectiveness of music interventions to traditional oral manipulation in patients with dental anxiety disorders, computer searches of the electronic databases of Wanfang, CNKI, VIP, PubMed, Web of Science, ScienceDirect, Cochrane library, Scopus, and CINAHL were conducted. The search period covered from 23 December 2022, through to the development of the database. The Cochrane Handbook was used to assess the quality of the included literature, and two researchers independently conducted the literature screening and data extraction. Stata 17.0 and RevMan 5.3 were used to conduct the meta-analysis. Results The preoperative baseline levels of the music intervention group were similar to those of the control group (p > 0.05), according to the meta-analysis, and music intervention significantly decreased heart rate (I2 = 81.2%, WMD (95% CI): -7.33 (-10.07, -4.58), p < 0.0001), systolic blood pressure fluctuations (I2 = 85.6%, WMD (95% CI): -6.10(-9.25, 2.95), p < 0.0001), diastolic blood pressure (I2 = 79.7%, WMD (95% CI): -4.29(-6.57, -2.02), p < 0.0001) fluctuations, anxiety scores (I2 = 19.6%, WMD (95% CI): -9.04(-11.45, 6.63), p < 0.0001), and pain scores (I2 = 32.7%, WMD (95% CI): -7.64(-9.43, -5.85), p < 0.0001), as well as significantly lowered anxiety and pain levels and raised patients' cooperation rates (I2 = 0%, OR (95% CI): 3.03(1.24, 7.40), p = 0.02). Conclusions Music interventions are effective for dental anxiety disorders, but given the limitations of the study, more multicenter, large-sample, high-quality randomized controlled trials are needed to further validate the findings and obtain more objective and reliable clinical evidence.


Assuntos
Musicoterapia , Música , Humanos , Musicoterapia/métodos , Ansiedade/prevenção & controle , Transtornos de Ansiedade , Dor , Estudos Multicêntricos como Assunto
15.
J Am Chem Soc ; 144(4): 1681-1689, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34965123

RESUMO

The removal of carbon dioxide (CO2) from acetylene (C2H2) is a critical industrial process for manufacturing high-purity C2H2. However, it remains challenging to address the tradeoff between adsorption capacity and selectivity, on account of their similar physical properties and molecular sizes. To overcome this difficulty, here we report a novel strategy involving the regulation of a hydrogen-bonding nanotrap on the pore surface to promote the separation of C2H2/CO2 mixtures in three isostructural metal-organic frameworks (MOFs, named MIL-160, CAU-10H, and CAU-23, respectively). Among them, MIL-160, which has abundant hydrogen-bonding acceptors as nanotraps, can selectively capture acetylene molecules and demonstrates an ultrahigh C2H2 storage capacity (191 cm3 g-1, or 213 cm3 cm-3) but much less CO2 uptake (90 cm3 g-1) under ambient conditions. The C2H2 adsorption amount of MIL-160 is remarkably higher than those for the other two isostructural MOFs (86 and 119 cm3 g-1 for CAU-10H and CAU-23, respectively) under the same conditions. More importantly, both simulation and experimental breakthrough results show that MIL-160 sets a new benchmark for equimolar C2H2/CO2 separation in terms of the separation potential (Δqbreak = 5.02 mol/kg) and C2H2 productivity (6.8 mol/kg). In addition, in situ FT-IR experiments and computational modeling further reveal that the unique host-guest multiple hydrogen-bonding interaction between the nanotrap and C2H2 is the key factor for achieving the extraordinary acetylene storage capacity and superior C2H2/CO2 selectivity. This work provides a novel and powerful approach to address the tradeoff of this extremely challenging gas separation.

16.
Anal Chem ; 94(12): 5084-5090, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35297623

RESUMO

The lateral flow assay (LFA) is one of the most successful analytical platforms for rapid on-site detection of target substances. This type of assay has been used in many rapid diagnoses, for example, pregnancy tests and infectious disease prevention. However, applications of LFAs for very small molecules remain a demanding challenge due to the problem of obtaining the corresponding binding partners to form sandwich complexes. In this paper, we report an affinity-switchable (AS) LFA (ASLFA) for the rapid and selective detection of hydrogen peroxide (H2O2), glucose, and ethanol in blood serum and urine samples. Unlike classical LFAs, which rely on the "always on" interaction between the antigen and the antibody, the working principle of ASLFA is based on the gold nanoparticle-conjugated AS biotin probe Au@H2O2-ASB, which can be activated by H2O2 for binding with the streptavidin (SA) protein. In the presence of glucose and ethanol, glucose oxidase and alcohol oxidase can react with the substrate to generate H2O2 and thereby activate Au@H2O2-ASB for binding with SA. Therefore, this ASLFA approach can be an alternative for classical glucose and ethanol detection methods in a wide variety of samples, where simple and rapid on-site detection is essential.


Assuntos
Ouro , Nanopartículas Metálicas , Etanol , Glucose , Ouro/química , Peróxido de Hidrogênio/química , Limite de Detecção , Nanopartículas Metálicas/química , Estreptavidina
17.
Inorg Chem ; 61(12): 5025-5032, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35290060

RESUMO

Atomic-level understanding of the gate-opening phenomenon in flexible porous materials is an important step toward learning how to control, design, and engineer them for applications such as the separation of gases from complex mixtures. Here, we report such mechanistic insight through an in-depth study of the pressure-induced gate-opening phenomenon in our earlier reported metal-organic framework (MOF) Zn(dps)2(SiF6) (dps = 4,4'-dipyridylsulfide), also called UTSA-300, using isotherm and calorimetry measurements, in situ infrared spectroscopy, and ab initio simulations. UTSA-300 is shown to selectively adsorb acetylene (C2H2) over ethylene (C2H4) and ethane (C2H6) and undergoes an abrupt gate-opening phenomenon, making this framework a highly selective gas separator of this complex mixture. The selective adsorption is confirmed by pressure-dependent in situ infrared spectroscopy, which, for the first time, shows the presence of multiple C2H2 species with varying strengths of bonding. A rare energetic feature at the gate-opening condition of the flexible MOF is observed in our differential heat energies, directly measured by calorimetry, showcasing the importance of this tool in adsorption property exploration of flexible frameworks and offering an energetic benchmark for further energy-based fundamental studies. Based on the agreement of this feature with ab initio-based adsorption energies of C2H2 in the closed-pore structure UTSA-300a ("a" refers to the activated form), this feature is assigned to the weakening of the H-bond C-H···F formed between C2H2 and fluorine of the MOF. Our analysis identifies the weakening of this H-bond, the expansion of the closed-pore MOF upon successive C2H2 coadsorption until its volume is close to that of the open-pore MOF, and the spontaneous gate opening to energetically favor C2H2 adsorption in the open-pore structure as crucial steps in the gate-opening mechanism in this system.

18.
Angew Chem Int Ed Engl ; 61(35): e202206613, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35737638

RESUMO

Although pyrazine-linked hybrid ultramicroporous materials (HUMs, pore size <7 Å) are benchmark physisorbents for trace carbon dioxide (CO2 ) capture under dry conditions, their affinity for water (H2 O) mitigates their carbon capture performance in humid conditions. Herein, we report on the co-adsorption of H2 O and CO2 by TIFSIX-3-Ni-a high CO2 affinity HUM-and find that slow H2 O sorption kinetics can enable CO2 uptake and release using shortened adsorption cycles with retention of ca. 90 % of dry CO2 uptake. Insight into co-adsorption is provided by in situ infrared spectroscopy and ab initio calculations. The binding sites and sorption mechanisms reveal that both CO2 and H2 O molecules occupy the same ultramicropore through favorable interactions between CO2 and H2 O at low water loading. An energetically favored water network displaces CO2 molecules at higher loading. Our results offer bottom-up design principles and insight into co-adsorption of CO2 and H2 O that is likely to be relevant across the full spectrum of carbon capture sorbents to better understand and address the challenge posed by humidity to gas capture.

19.
J Am Chem Soc ; 143(24): 8993-9001, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34106720

RESUMO

The enantioselective synthesis of axially chiral biaryls by a copper-catalyzed Diels-Alder/retro-Diels-Alder reaction of 2-pyrones with alkynes is reported herein. Using electron-deficient 2-pyrones and electron-rich 1-naphthyl acetylenes as the reaction partners, a broad range of axially chiral biaryl esters are obtained in excellent yields (up to 97% yield) and enantioselectivities (up to >99% ee). DFT calculations reveal the reaction mechanism and provide insights into the origins of the stereoselectivities. The practicality and robustness of this reaction are showcased by gram-scale synthesis. The synthetic utilizations are demonstrated by the amenable transformations of the products.

20.
J Am Chem Soc ; 143(17): 6328-6332, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885296

RESUMO

The defect concentration in the prototypical metal-organic framework UiO-66 can be well controlled during synthesis, leading to precisely tunable physicochemical properties for this structure. However, there has been a long-standing debate regarding the nature of the compensating species present at the defective sites. Here, we present unambiguous spectroscopic evidence that the missing-linker defect sites in an ambient environment are compensated with both carboxylate and water (bound through intermolecular hydrogen bonding), which is further supported by ab initio calculations. In contrast to the prevailing assumption that the monocarboxylate groups (COO-) of the modulators form bidentate bonding with two Zr4+ sites, COO- is found to coordinate to an open Zr4+ site in an unidentate mode. The neighboring Zr4+ site is terminated by a coordinating H2O molecule, which helps to stabilize the COO- group. This finding not only provides a new understanding of defect termination in UiO-66, but also sheds light on the origin of its catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA