Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 102(3): 364-374, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29429573

RESUMO

Despite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing, and bone fragility. Whole-exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A) as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss-of-function paradigm, wherein mutations attenuated or abolished protein activity with concomitant defects in gut development and function.


Assuntos
Osso e Ossos/patologia , Colestase/genética , Diarreia/genética , Perda Auditiva/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação com Perda de Função/genética , Adolescente , Animais , Pré-Escolar , Diarreia/fisiopatologia , Família , Feminino , Fibroblastos/patologia , Motilidade Gastrointestinal , Humanos , Recém-Nascido , Linfócitos/patologia , Masculino , Linhagem , Fenótipo , Síndrome , Adulto Jovem , Peixe-Zebra
2.
Am J Hum Genet ; 101(3): 466-477, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886345

RESUMO

RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration.


Assuntos
Encefalopatias/genética , Deficiências do Desenvolvimento/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Proteínas rac1 de Ligação ao GTP/genética , Adolescente , Sequência de Aminoácidos , Animais , Encefalopatias/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Feminino , Humanos , Lactente , Masculino , Camundongos , Microcefalia/patologia , Linhagem , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
3.
Am J Hum Genet ; 97(2): 343-52, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26235985

RESUMO

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.


Assuntos
RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Caracteres Sexuais , Via de Sinalização Wnt/genética , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Exoma/genética , Feminino , Dosagem de Genes/genética , Humanos , Deficiência Intelectual/patologia , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA , Peixe-Zebra
4.
Genome Res ; 25(2): 155-66, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25561519

RESUMO

RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.


Assuntos
Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Mutação , RNA Polimerase III/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Transcrição Gênica , Anormalidades Múltiplas/diagnóstico , Adolescente , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Encéfalo/patologia , Proliferação de Células , Criança , Pré-Escolar , Exoma , Fácies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Fenótipo , Conformação Proteica , Isoformas de Proteínas , Irmãos , Síndrome , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Peixe-Zebra
5.
Am J Hum Genet ; 95(1): 85-95, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995868

RESUMO

Restless legs syndrome (RLS) is a common neurologic condition characterized by nocturnal dysesthesias and an urge to move, affecting the legs. RLS is a complex trait, for which genome-wide association studies (GWASs) have identified common susceptibility alleles of modest (OR 1.2-1.7) risk at six genomic loci. Among these, variants in MEIS1 have emerged as the largest risk factors for RLS, suggesting that perturbations in this transcription factor might be causally related to RLS susceptibility. To establish this causality, direction of effect, and total genetic burden of MEIS1, we interrogated 188 case subjects and 182 control subjects for rare alleles not captured by previous GWASs, followed by genotyping of ∼3,000 case subjects and 3,000 control subjects, and concluded with systematic functionalization of all discovered variants using a previously established in vivo model of neurogenesis. We observed a significant excess of rare MEIS1 variants in individuals with RLS. Subsequent assessment of all nonsynonymous variants by in vivo complementation revealed an excess of loss-of-function alleles in individuals with RLS. Strikingly, these alleles compromised the function of the canonical MEIS1 splice isoform but were irrelevant to an isoform known to utilize an alternative 3' sequence. Our data link MEIS1 loss of function to the etiopathology of RLS, highlight how combined sequencing and systematic functional annotation of rare variation at GWAS loci can detect risk burden, and offer a plausible explanation for the specificity of phenotypic expressivity of loss-of-function alleles at a locus broadly necessary for neurogenesis and neurodevelopment.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Neoplasias/genética , Síndrome das Pernas Inquietas/genética , Animais , Teste de Complementação Genética , Genótipo , Humanos , Hibridização In Situ , Espectrometria de Massas , Proteína Meis1 , Peixe-Zebra/embriologia
6.
Hum Genomics ; 10(1): 23, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27329102

RESUMO

Age-related macular degeneration (AMD) is an ocular neurodegenerative disorder and is the leading cause of legal blindness in Western societies, with a prevalence of up to 8 % over the age of 60, which continues to increase with age. AMD is characterized by the progressive breakdown of the macula (the central region of the retina), resulting in the loss of central vision including visual acuity. While its molecular etiology remains unclear, advances in genetics and genomics have illuminated the genetic architecture of the disease and have generated attractive pathomechanistic hypotheses. Here, we review the genetic architecture of AMD, considering the contribution of both common and rare alleles to susceptibility, and we explore the possible mechanistic links between photoreceptor degeneration and the alternative complement pathway, a cascade that has emerged as the most potent genetic driver of this disorder.


Assuntos
Via Alternativa do Complemento/genética , Degeneração Macular/imunologia , Animais , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Degeneração Macular/genética , Mutação , Fatores de Risco
7.
J Cell Sci ; 125(Pt 2): 362-75, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22302990

RESUMO

Primary cilia are conserved organelles that play crucial roles as mechano- and chemosensors, as well as transducing signaling cascades. Consequently, ciliary dysfunction results in a broad range of phenotypes: the ciliopathies. Bardet-Biedl syndrome (BBS), a model ciliopathy, is caused by mutations in 16 known genes. However, the biochemical functions of the BBS proteins are not fully understood. Here we show that the BBS7 protein (localized in the centrosomes, basal bodies and cilia) probably has a nuclear role by virtue of the presence of a biologically confirmed nuclear export signal. Consistent with this observation, we show that BBS7 interacts physically with the polycomb group (PcG) member RNF2 and regulate its protein levels, probably through a proteasome-mediated mechanism. In addition, our data supports a similar role for other BBS proteins. Importantly, the interaction with this PcG member is biologically relevant because loss of BBS proteins leads to the aberrant expression of endogenous RNF2 targets in vivo, including several genes that are crucial for development and for cellular and tissue homeostasis. Our data indicate a hitherto unappreciated, direct role for the BBS proteins in transcriptional regulation and potentially expand the mechanistic spectrum that underpins the development of ciliary phenotypes in patients.


Assuntos
Regulação da Expressão Gênica , Proteínas/fisiologia , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Núcleo Celular/metabolismo , Simulação por Computador , Proteínas do Citoesqueleto , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Sinais de Exportação Nuclear , Complexo Repressor Polycomb 1/metabolismo , Transporte Proteico , Proteínas/metabolismo , Peixe-Zebra/genética
8.
Nat Genet ; 37(10): 1135-40, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16170314

RESUMO

The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.


Assuntos
Síndrome de Bardet-Biedl/patologia , Proteínas Associadas aos Microtúbulos/genética , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Síndrome de Bardet-Biedl/genética , Polaridade Celular/genética , Cílios/química , Cóclea/patologia , Células Epiteliais/química , Pálpebras/fisiopatologia , Chaperoninas do Grupo II , Camundongos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/análise , Defeitos do Tubo Neural/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Hum Mol Genet ; 20(18): 3699-709, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21665990

RESUMO

Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10(-8)] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10(-9)). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD.


Assuntos
Colágeno Tipo X/genética , Variação Genética , Estudo de Associação Genômica Ampla , Degeneração Macular/genética , Proteínas de Neoplasias/genética , Proteínas Tirosina Quinases/genética , Fator A de Crescimento do Endotélio Vascular/genética , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , População Branca/genética
11.
Proc Natl Acad Sci U S A ; 107(16): 7395-400, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20385826

RESUMO

Advanced age-related macular degeneration (AMD) is the leading cause of late onset blindness. We present results of a genome-wide association study of 979 advanced AMD cases and 1,709 controls using the Affymetrix 6.0 platform with replication in seven additional cohorts (totaling 5,789 unrelated cases and 4,234 unrelated controls). We also present a comprehensive analysis of copy-number variations and polymorphisms for AMD. Our discovery data implicated the association between AMD and a variant in the hepatic lipase gene (LIPC) in the high-density lipoprotein cholesterol (HDL) pathway (discovery P = 4.53e-05 for rs493258). Our LIPC association was strongest for a functional promoter variant, rs10468017, (P = 1.34e-08), that influences LIPC expression and serum HDL levels with a protective effect of the minor T allele (HDL increasing) for advanced wet and dry AMD. The association we found with LIPC was corroborated by the Michigan/Penn/Mayo genome-wide association study; the locus near the tissue inhibitor of metalloproteinase 3 was corroborated by our replication cohort for rs9621532 with P = 3.71e-09. We observed weaker associations with other HDL loci (ABCA1, P = 9.73e-04; cholesterylester transfer protein, P = 1.41e-03; FADS1-3, P = 2.69e-02). Based on a lack of consistent association between HDL increasing alleles and AMD risk, the LIPC association may not be the result of an effect on HDL levels, but it could represent a pleiotropic effect of the same functional component. Results implicate different biologic pathways than previously reported and provide new avenues for prevention and treatment of AMD.


Assuntos
Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Lipase/genética , Lipase/fisiologia , Degeneração Macular/genética , Alelos , Estudos de Casos e Controles , HDL-Colesterol/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Genótipo , Humanos , Lipídeos/química , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Risco , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores
12.
Proc Natl Acad Sci U S A ; 107(16): 7401-6, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20385819

RESUMO

We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10(-75)), ARMS2 (P < 10(-59)), C2/CFB (P < 10(-20)), C3 (P < 10(-9)), and CFI (P < 10(-6)). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 x 10(-11)), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 x 10(-7); CETP, P = 7.4 x 10(-7)) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c-associated alleles near LPL (P = 3.0 x 10(-3)) and ABCA1 (P = 5.6 x 10(-4)). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.


Assuntos
Predisposição Genética para Doença , Lipoproteínas HDL/metabolismo , Degeneração Macular/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Alelos , Estudos de Casos e Controles , Mapeamento Cromossômico , Fator I do Complemento/genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Regressão , Risco , Inibidor Tecidual de Metaloproteinase-3/fisiologia
13.
Ophthalmology ; 119(9): 1874-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22705344

RESUMO

PURPOSE: To investigate whether the 2 subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV), and geographic atrophy (GA) segregate separately in families and to identify which genetic variants are associated with these 2 subtypes. DESIGN: Sibling correlation study and genome-wide association study (GWAS). PARTICIPANTS: For the sibling correlation study, 209 sibling pairs with advanced AMD were included. For the GWAS, 2594 participants with advanced AMD subtypes and 4134 controls were included. Replication cohorts included 5383 advanced AMD participants and 15 240 controls. METHODS: Participants had the AMD grade assigned based on fundus photography, examination, or both. To determine heritability of advanced AMD subtypes, a sibling correlation study was performed. For the GWAS, genome-wide genotyping was conducted and 6 036 699 single nucleotide polymorphisms (SNPs) were imputed. Then, the SNPs were analyzed with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts. MAIN OUTCOME MEASURES: Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes. RESULTS: The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P = 4.2 × 10(-5)), meaning that in siblings of probands with CNV or GA, the same advanced subtype is more likely to develop. In the analysis comparing participants with CNV to those with GA, a statistically significant association was observed at the ARMS2/HTRA1 locus (rs10490924; odds ratio [OR], 1.47; P = 4.3 × 10(-9)), which was confirmed in the replication samples (OR, 1.38; P = 7.4 × 10(-14) for combined discovery and replication analysis). CONCLUSIONS: Whether CNV versus GA develops in a patient with AMD is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes, but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations that differ for advanced AMD subtypes and deserve follow-up in additional studies.


Assuntos
Neovascularização de Coroide/genética , Atrofia Geográfica/genética , Degeneração Macular/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Serina Endopeptidases/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Masculino , Fatores de Risco , Irmãos
14.
Hum Mol Genet ; 18(R2): R146-55, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19808790

RESUMO

Peripheral sensory perception is established through an elaborate network of specialized neurons that mediate the translation of extraorganismal stimuli through the use of a broad array of receptors and downstream effector molecules. Studies of human genetic disorders, as well as mouse and other animal models, have identified some of the key molecules necessary for peripheral innervation and function. These findings have, in turn, yielded new insights into the developmental networks and homeostatic mechanisms necessary for the transformation of external stimuli into interpretable electrical impulses. In this review, we will summarize and discuss some of the genes/proteins implicated in two particular aspects of sensory perception, thermosensation and mechanosensation, highlighting pathways whose perturbation leads to both isolated and syndromic sensory deficits.


Assuntos
Doenças Genéticas Inatas/fisiopatologia , Mecanotransdução Celular/fisiologia , Percepção/fisiologia , Temperatura , Animais , Humanos , Neurogênese , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
15.
N Engl J Med ; 359(14): 1456-63, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18753640

RESUMO

BACKGROUND: Age-related macular degeneration is the most common cause of irreversible visual impairment in the developed world. Advanced age-related macular degeneration consists of geographic atrophy and choroidal neovascularization. The specific genetic variants that predispose patients to geographic atrophy are largely unknown. METHODS: We tested for an association between the functional toll-like receptor 3 gene (TLR3) variant rs3775291 (involving the substitution of phenylalanine for leucine at amino acid 412) and age-related macular degeneration in Americans of European descent. We also tested for the effect of TLR3 Leu and Phe variants on the viability of human retinal pigment epithelial cells in vitro and on apoptosis of retinal pigment epithelial cells from wild-type mice and Tlr3-knockout (Tlr3(-/-)) mice. RESULTS: The Phe variant (encoded by the T allele at rs3775291) was associated with protection against geographic atrophy (P=0.005). This association was replicated in two independent case-control series of geographic atrophy (P=5.43x10(-4) and P=0.002). No association was found between TLR3 variants and choroidal neovascularization. A prototypic TLR3 ligand induced apoptosis in a greater fraction of human retinal pigment epithelial cells with the Leu-Leu genotype than those with the Leu-Phe genotype and in a greater fraction of wild-type mice than Tlr3(-/-) mice. CONCLUSIONS: The TLR3 412Phe variant confers protection against geographic atrophy, probably by suppressing the death of retinal pigment epithelial cells. Since double-stranded RNA (dsRNA) can activate TLR3-mediated apoptosis, our results suggest a role of viral dsRNA in the development of geographic atrophy and point to the potential toxic effects of short-interfering-RNA therapies in the eye.


Assuntos
Macula Lutea/patologia , Degeneração Macular/genética , Degeneração Macular/patologia , Receptor 3 Toll-Like/genética , Animais , Apoptose , Estudos de Casos e Controles , Neovascularização de Coroide/genética , Genótipo , Humanos , Técnicas In Vitro , Indutores de Interferon/farmacologia , Camundongos , Camundongos Knockout , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/efeitos dos fármacos , Epitélio Pigmentado Ocular/patologia , Poli I-C/farmacologia , Polimorfismo de Nucleotídeo Único , RNA de Cadeia Dupla/efeitos adversos , RNA Interferente Pequeno/efeitos adversos , RNA Viral/efeitos adversos
16.
Hum Hered ; 67(3): 193-205, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19077438

RESUMO

OBJECTIVE: Human adiposity is highly heritable, but few of the genes that predispose to obesity in most humans are known. We tested candidate genes in pathways related to food intake and energy expenditure for association with measures of adiposity. METHODS: We studied 355 genetic variants in 30 candidate genes in 7 molecular pathways related to obesity in two groups of adult subjects: 1,982 unrelated European Americans living in the New York metropolitan area drawn from the extremes of their body mass index (BMI) distribution and 593 related Yup'ik Eskimos living in rural Alaska characterized for BMI, body composition, waist circumference, and skin fold thicknesses. Data were analyzed by using a mixed model in conjunction with a false discovery rate (FDR) procedure to correct for multiple testing. RESULTS: After correcting for multiple testing, two single nucleotide polymorphisms (SNPs) in Ghrelin (GHRL) (rs35682 and rs35683) were associated with BMI in the New York European Americans. This association was not replicated in the Yup'ik participants. There was no evidence for gene x gene interactions among genes within the same molecular pathway after adjusting for multiple testing via FDR control procedure. CONCLUSION: Genetic variation in GHRL may have a modest impact on BMI in European Americans.


Assuntos
Adiposidade/genética , Grelina/genética , Inuíte/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adulto , Alaska , Composição Corporal/genética , Índice de Massa Corporal , Epistasia Genética , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Fenótipo , Análise de Sequência de DNA , Dobras Cutâneas , Circunferência da Cintura/genética
17.
JCI Insight ; 4(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31723061

RESUMO

The ciliopathies are a group of phenotypically overlapping disorders caused by structural or functional defects in the primary cilium. Although disruption of numerous signaling pathways and cellular trafficking events have been implicated in ciliary pathology, treatment options for affected individuals remain limited. Here, we performed a genome-wide RNAi (RNA interference) screen to identify genetic suppressors of BBS4, one of the genes mutated in Bardet-Biedl syndrome (BBS). We discovered 10 genes that, when silenced, ameliorate BBS4-dependent pathology. One of these encodes USP35, a negative regulator of the ubiquitin proteasome system, suggesting that inhibition of a deubiquitinase, and subsequent facilitation of the clearance of signaling components, might ameliorate BBS-relevant phenotypes. Testing of this hypothesis in transient and stable zebrafish genetic models showed this posit to be true; suppression or ablation of usp35 ameliorated hallmark ciliopathy defects including impaired convergent extension (CE), renal tubule convolution, and retinal degeneration with concomitant clearance of effectors such as ß-catenin and rhodopsin. Together, our findings reinforce a direct link between proteasome-dependent degradation and ciliopathies and suggest that augmentation of this system might offer a rational path to novel therapeutic modalities.


Assuntos
Ciliopatias/genética , Endopeptidases/genética , Proteases Específicas de Ubiquitina/genética , Animais , Síndrome de Bardet-Biedl/tratamento farmacológico , Síndrome de Bardet-Biedl/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Cílios/genética , Técnicas Genéticas , Humanos , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Degeneração Retiniana/genética , Via de Sinalização Wnt/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
18.
Sci Rep ; 8(1): 10779, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018450

RESUMO

Kabuki Syndrome (KS) is a rare disorder characterized by distinctive facial features, short stature, skeletal abnormalities, and neurodevelopmental deficits. Previously, we showed that loss of function of RAP1A, a RAF1 regulator, can activate the RAS/MAPK pathway and cause KS, an observation recapitulated in other genetic models of the disorder. These data suggested that suppression of this signaling cascade might be of therapeutic benefit for some features of KS. To pursue this possibility, we performed a focused small molecule screen of a series of RAS/MAPK pathway inhibitors, where we tested their ability to rescue disease-relevant phenotypes in a zebrafish model of the most common KS locus, kmt2d. Consistent with a pathway-driven screening paradigm, two of 27 compounds showed reproducible rescue of early developmental pathologies. Further analyses showed that one compound, desmethyl-Dabrafenib (dmDf), induced no overt pathologies in zebrafish embryos but could rescue MEK hyperactivation in vivo and, concomitantly, structural KS-relevant phenotypes in all KS zebrafish models (kmt2d, kmd6a and rap1). Mass spectrometry quantitation suggested that a 100 nM dose resulted in sub-nanomolar exposure of this inhibitor and was sufficient to rescue both mandibular and neurodevelopmental defects. Crucially, germline kmt2d mutants recapitulated the gastrulation movement defects, micrognathia and neurogenesis phenotypes of transient models; treatment with dmDf ameliorated all of them significantly. Taken together, our data reinforce a causal link between MEK hyperactivation and KS and suggest that chemical suppression of BRAF might be of potential clinical utility for some features of this disorder.


Assuntos
Anormalidades Múltiplas/prevenção & controle , Face/anormalidades , Doenças Hematológicas/prevenção & controle , Imidazóis/farmacologia , Oximas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Doenças Vestibulares/prevenção & controle , Peixe-Zebra/crescimento & desenvolvimento , Anormalidades Múltiplas/patologia , Animais , Anormalidades Craniofaciais/prevenção & controle , Face/patologia , Doenças Hematológicas/patologia , Imidazóis/efeitos adversos , Imidazóis/química , Anormalidades Maxilomandibulares/prevenção & controle , Sistema de Sinalização das MAP Quinases , Oximas/efeitos adversos , Oximas/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Testes de Toxicidade , Doenças Vestibulares/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
19.
Ophthalmic Genet ; 28(2): 95-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17558852

RESUMO

Bardet-Biedl Syndrome (BBS) is a multisystemic disorder diagnosed on the basis of a combination of primary and secondary clinical features that include retinal dystrophy, obesity, polydactyly, cognitive dysfunction, and renal malformations. We report a unique case of BBS in a 13-year old girl of African-American descent who presented with retinitis pigmentosa, obesity, polydactyly, learning disabilities, precocious puberty, hypertension, renal cysts, and Hirschprung disease. Further evaluation revealed a history of precocious puberty, which is antithetical to the common manifestations of BBS, while neuroimaging was suggestive of periventricular leukomalacia and neuro-electrophysiologic studies revealed diffuse cerebral disturbance, which may contribute to her neurological abnormalities. The patient was also diagnosed with hydrometrocolpos, a finding typical of McKusick-Kaufman Syndrome (MKKS) but infrequent in other disorders. This observation, together with recent findings in some mouse models of BBS, raises the question of whether hydrometrocolpos should be considered as an additional diagnostic criterion for BBS to be used in females in parallel to the criterion of hypogonadism in males, thereby improving diagnostic sensitivity.


Assuntos
Anormalidades Múltiplas/diagnóstico , Síndrome de Bardet-Biedl/diagnóstico , Hidrocolpos/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Negro ou Afro-Americano , Síndrome de Bardet-Biedl/complicações , Síndrome de Bardet-Biedl/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Polidactilia
20.
Vision Res ; 47(27): 3394-407, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18022666

RESUMO

Bardet-Biedl syndrome (BBS) is an oligogenic syndrome whose manifestations include retinal degeneration, renal abnormalities, obesity and polydactylia. Evidence suggests that the main etiopathophysiology of this syndrome is impaired intraflagellar transport (IFT). In this study, we study the Bbs4-null mouse and investigate photoreceptor structure and function after loss of this gene. We find that Bbs4-null mice have defects in the transport of phototransduction proteins from the inner segments to the outer segments, before signs of cell death. Additionally, we show defects in synaptic transmission from the photoreceptors to secondary neurons of the visual system, demonstrating multiple functions for BBS4 in photoreceptors.


Assuntos
Síndrome de Bardet-Biedl/fisiopatologia , Proteínas Associadas aos Microtúbulos/metabolismo , Células Fotorreceptoras/metabolismo , Animais , Apoptose , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Proteínas de Transporte/metabolismo , Eletrorretinografia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Modelos Animais , Células Fotorreceptoras/química , Células Fotorreceptoras/ultraestrutura , Transporte Proteico , Opsinas de Bastonetes/metabolismo , Transmissão Sináptica , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA