Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(40): 12433-12441, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39351960

RESUMO

There is an increasing demand for p-type semiconductors with scalable growth, excellent device performance, and back-end-of-line (BEOL) compatibility. Recently, tellurium (Te) has emerged as a promising candidate due to its appealing electrical properties and potential low-temperature production. So far, nearly all of the scalable production and integration of Te with complementary metal oxide semiconductor (CMOS) technology have been based on physical vapor deposition. Here we demonstrate wafer-scale atomic layer-deposited (ALD) TeOx/Te heterostructure thin-film transistors with high uniformity and integration compatibility. The wafer-scale uniformity of the film is evidenced by spatial Raman mappings and statistical electrical analysis. Furthermore, surface accumulation-induced good ohmic contact has been observed and explained by the unique band alignment of the charge neutrality level inside the Te valence band. These results demonstrate ALD TeOx/Te as a promising p-type semiconductor for monolithic three-dimensional integration in BEOL CMOS applications incorporated with well-established n-type ALD oxide semiconductors.

2.
Nano Lett ; 23(8): 3599-3606, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057864

RESUMO

Chirality arises from the asymmetry of materials, where two counterparts are the mirror image of each other. The interaction between circular-polarized light and quantum materials is enhanced in chiral space groups due to the structural chirality. Tellurium (Te) possesses the simplest chiral crystal structure, with Te atoms covalently bonded into a spiral atomic chain (left- or right-handed) with a periodicity of 3. Here, we investigate the tunable circular photoelectric responses in 2D Te field-effect transistors with different chirality, including the longitudinal circular photogalvanic effect induced by the radial spin texture (electron-spin polarization parallel to the electron momentum direction) and the circular photovoltaic effect induced by the chiral crystal structure (helical Te atomic chains). Our work demonstrates the controllable manipulation of the chirality degree of freedom in materials.

3.
Nano Lett ; 23(18): 8445-8453, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37677143

RESUMO

Tellurium (Te) is an elemental semiconductor with a simple chiral crystal structure. Te in a two-dimensional (2D) form synthesized by a solution-based method shows excellent electrical, optical, and thermal properties. In this work, the chirality of hydrothermally grown 2D Te is identified and analyzed by hot sulfuric acid etching and high-angle tilted high-resolution scanning transmission electron microscopy. The gate-tunable nonlinear electrical responses, including the nonreciprocal electrical transport in the longitudinal direction and the nonlinear planar Hall effect in the transverse direction, are observed in 2D Te under a magnetic field. Moreover, the nonlinear electrical responses have opposite signs in left- and right-handed 2D Te due to the opposite spin polarizations ensured by the chiral symmetry. The fundamental relationship between the spin-orbit coupling and the crystal symmetry in two enantiomers provides a viable platform for realizing chirality-based electronic devices by introducing the degree of freedom of chirality into electron transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA