Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856662

RESUMO

Nickel phosphorus trisulfide (NiPS3), a van der Waals 2D antiferromagnet, has received significant interest for its intriguing properties in recent years. However, despite its fundamental importance in the physics of low-dimensional magnetism and promising potential for technological applications, the study of magnetic domains in NiPS3 down to an atomically thin state is still lacking. Here, we report the layer-dependent magnetic characteristics and magnetic domains in NiPS3 by employing linear dichroism spectroscopy, polarized microscopy, spin-correlated photoluminescence, and Raman spectroscopy. Our results reveal the existence of the paramagnetic-to-antiferromagnetic phase transition in bulk to bilayer NiPS3 and provide evidence of the role of stronger spin fluctuations in thin NiPS3. Furthermore, our study identifies three distinct antiferromagnetic domains within atomically thin NiPS3 and captures the thermally activated domain evolution. Our findings provide crucial insights for the development of antiferromagnetic spintronics and related technologies.

2.
Nano Lett ; 23(21): 9740-9747, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37879097

RESUMO

Exciton localization through nanoscale strain has been used to create highly efficient single-photon emitters (SPEs) in 2D materials. However, the strong Coulomb interactions between excitons can lead to nonradiative recombination through exciton-exciton annihilation, negatively impacting SPE performance. Here, we investigate the effect of Coulomb interactions on the brightness, single photon purity, and operating temperatures of strain-localized GaSe SPEs by using electrostatic doping. By gating GaSe to the charge neutrality point, the exciton-exciton annihilation nonradiative pathway is suppressed, leading to ∼60% improvement of emission intensity and an enhancement of the single photon purity g(2)(0) from 0.55 to 0.28. The operating temperature also increased from 4.5 K to 85 K consequently. This research provides insight into many-body interactions in excitons confined by nanoscale strain and lays the groundwork for the optimization of SPEs for optoelectronics and quantum photonics.

3.
Nat Mater ; 20(7): 964-970, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33903748

RESUMO

Antiferromagnets are promising components for spintronics due to their terahertz resonance, multilevel states and absence of stray fields. However, the zero net magnetic moment of antiferromagnets makes the detection of the antiferromagnetic order and the investigation of fundamental spin properties notoriously difficult. Here, we report an optical detection of Néel vector orientation through an ultra-sharp photoluminescence in the van der Waals antiferromagnet NiPS3 from bulk to atomically thin flakes. The strong correlation between spin flipping and electric dipole oscillator results in a linear polarization of the sharp emission, which aligns perpendicular to the spin orientation in the crystal. By applying an in-plane magnetic field, we achieve manipulation of the photoluminescence polarization. This correlation between emitted photons and spins in layered magnets provides routes for investigating magneto-optics in two-dimensional materials, and hence opens a path for developing opto-spintronic devices and antiferromagnet-based quantum information technologies.

4.
ACS Nano ; 18(1): 1110-1117, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150584

RESUMO

Lateral confinement of layered, two-dimensional (2D) materials has uniquely enabled the exploration of several topological phenomena in electron transport due to the well-defined nanoscale cross-sections and perimeters. At present, research on laterally confined 2D materials is constrained by the lack of synthesis methods that can reliably and controllably produce nanostructures with narrow widths and high aspect ratios. We demonstrate the use of thermomechanical nanomolding (TMNM) to fabricate nanowires of six layered materials (Te, In2Se3, Bi2Te3, Bi2Se3, GaSe, and Sb2Te3) with widths of 40 nm and aspect ratios above 100. During molding, the van der Waals (vdW) layers rotate by 90° from the horizontal direction in the bulk feedstock to the vertical direction in the molded nanowire, such that the layers are aligned along the nanowire length. We find that interfacial diffusion and surface energy minimization drive nanowire formation during TMNM, often resulting in single-crystalline nanowires with consistent crystallographic orientation.

5.
ACS Nano ; 17(23): 23455-23465, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044592

RESUMO

Nanoscale strain control of exciton funneling is an increasingly critical tool for the scalable production of single photon emitters (SPEs) in two-dimensional materials. However, conventional far-field optical microscopies remain constrained in spatial resolution by the diffraction limit and thus can provide only a limited description of nanoscale strain localization of SPEs. Here, we quantify the effects of nanoscale heterogeneous strain on the energy and brightness of GaSe SPEs on nanopillars with correlative cathodoluminescence, photoluminescence, and atomic force microscopy, supported by density functional theory simulations. We report the strain-localized SPEs have a broad range of emission wavelengths from 620 to 900 nm. We reveal substantial strain-controlled SPE wavelength tunability over a ∼100 nm spectral range and 2 orders of magnitude enhancement in the SPE brightness at the pillar center due to Type-I exciton funneling. In addition, we show that radiative biexciton cascade processes contribute to observed CL photon superbunching. Also, the GaSe SPEs show excellent stability, where their properties remain unchanged after electron beam exposure. We anticipate that this comprehensive study on the nanoscale strain control of two-dimensional SPEs will provide key insights to guide the development of truly deterministic quantum photonics.

6.
Sci Adv ; 8(2): eabl7707, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030029

RESUMO

Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet­NiPS3, from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS3. Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets.

7.
ACS Appl Mater Interfaces ; 12(50): 56361-56371, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270412

RESUMO

Epidermal electronics is regarded as the next-generation technology, and graphene is a promising electrode, which is a key building block of such devices. However, graphene has a tendency to crack at small strains with a rapidly increased resistance upon stretching. Here, to enable graphene applicable in epidermal electronics, we designed a novel graphene structure that is molybdenum chloride (MoCl5)-intercalated few-layer graphene (Mo-FLG) fabricated in a confined environment. In the case of bilayer graphene (BLG), MoCl5-intercalated bilayer graphene (Mo-BLG) exhibited a low sheet resistance of 40 Ω/square (sq) at a transmittance of 80%. Due to the self-barrier doping effect, the sheet resistance increased to only 60 Ω/sq after exposing to the atmosphere over 1 month. Transferred onto elastomer substrates, Mo-BLG can work as an electrode up to 80% strain and maintain a high conductivity that is durable over 2000 cycles at 30% strain. This mechano-electrostability is attributed to the special intercalated structure where the intercalated dopants act as lubricants to weaken the layer-layer interaction and allow a certain degree of sliding, as well as electrical crack-connectors to bridge the cracked domains at a high strain. Mo-BLG can be applied as epidermal electrodes to monitor electrophysiological signals such as electrocardiogram (ECG), electrooculogram (EOG), electroencephalography (EEG), and surface electromyogram (sEMG) with high signal-to-noise ratios (SNRs) comparable to commercial Ag/AgCl electrode. This is the first demonstration of epidermal electrodes based on intercalation-doped graphene applied in health monitoring, shedding light on the future development of graphene-based epidermal electronics.


Assuntos
Eletrocardiografia/instrumentação , Eletroencefalografia/instrumentação , Eletromiografia/instrumentação , Grafite/química , Cloretos/química , Elastômeros/química , Condutividade Elétrica , Eletrodos , Epiderme/fisiologia , Proteínas Filagrinas , Humanos , Molibdênio/química , Razão Sinal-Ruído
8.
ACS Appl Mater Interfaces ; 12(1): 1486-1494, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31793286

RESUMO

Stretchable conductors have been achieved by stacking conductive nanomaterials onto the surfaces of elastomeric substrates. However, many of them show a dramatic decrease in conductivity under strain without an efficient way for the conductive layer to release strain. Here, we report a transparent, stretchable, and self-healing conductor with excellent mechanoelectrical stability by introducing dynamic bonding between conductive nanomaterials and an elastomeric substrate. We prepare the conductor by semiembedding Ag nanowires (AgNWs) into a self-healing polydimethylsiloxane (PDMS)-based elastomer, which is modified with bipyridine (Bpy) ligand and further cross-linked by adding Zn2+ as coordinator (Zn-Bpy-PDMS). The dynamic Ag-N bonds not only improve the wettability of the substrate and facilitate the spreading of AgNWs but also reversibly break and reform to accommodate the deformation of AgNWs. As a result, the resistance increase of Zn-Bpy-PDMS/AgNWs is much smaller than that without the dynamic bonding (PDMS/AgNWs). Besides, this conductor exhibits excellent conductivity (76.2 Ω/sq) and transparency (86.6% @ 550 nm), as well as extraordinary self-healing property with a low resistance increase (ΔR/R0 ∼ 1.4) after healing at room temperature for 1 day. This work provides insights into the future design of integrated electronic skin with transparency, stretchability, conductivity, and self-healing capability for applications in wearable optoelectronic devices.


Assuntos
Dimetilpolisiloxanos/química , Elastômeros/química , Nanofios/química , Dispositivos Eletrônicos Vestíveis , Dipeptídeos , Elasticidade , Condutividade Elétrica , Humanos , Nanoestruturas/química , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA