RESUMO
Ferecrystals, a distinctive class of misfit layered compounds, hold significant promise in manipulating the phonon transport owing to their two-dimensional (2D) natural superlattice-type structure and turbostratic (rotational) disorder present between the constituent layers. Integrating these 2D intergrowth structures as nanodomains embedded in a bulk thermoelectric matrix is a formidable challenge in synthetic chemistry, yet offers groundbreaking opportunities for efficient thermoelectrics. Here, we have achieved an exceptionally high thermoelectric figure of merit, zT â¼ 2.2, at 823 K in n-type Ta and Br-codoped SnSe, by successfully incorporating [(SnSe)1.15]7(TaSe2)1 ferecrystals with [110] SnSe//[100] TaSe2 orientation, as nanostructures with modulations in few nm in bulk SnSe solid-state matrix. While the presence of ferecrystal nanostructures induces strong scattering of heat-carrying phonons resulting in an ultralow lattice thermal conductivity (κL) of â¼0.18 W m-1 K-1 at 773 K, the Ta and Br codoping strategy increases the concentration of n-type charge carriers for enhanced electrical conductivity. Our approach provides a new pathway for damping the phonon transport and enhancing the thermoelectric performance in 2D layered materials.
RESUMO
Comprehension of chemical bonding and its intertwined relation with charge carriers and heat propagation through a crystal lattice is imperative to design compounds for thermoelectric energy conversion. Here, we report the synthesis of large single crystal of new p-type cubic AgSnSbTe3 which shows an innately ultra-low lattice thermal conductivity (κlat ) of 0.47-0.27â Wm-1 â K-1 and a high electrical conductivity (1238 - 800â S cm-1 ) in the temperature range 294-723â K. We investigated the origin of the low κlat by analysing the nature of the chemical bonding and its crystal structure. The interaction between Sn(5â s)/Ag(4d) and Te(5p) orbitals was found to generate antibonding states just below the Fermi level in the electronic band structure, resulting in a softening of the lattice in AgSnSbTe3 . Furthermore, the compound exhibits metavalent bonding which provides highly polarizable bonds with a strong lattice anharmonicity while maintaining the superior electrical conductivity. The electronic band structure exhibits nearly degenerate valence-band maxima that help to achieve a high Seebeck coefficient throughout the measured temperature range and, as a result, the maximum thermoelectric figure of merit reaches to ≈1.2 at 661â K in pristine single crystal of AgSnSbTe3 .
RESUMO
Achieving glass-like ultra-low thermal conductivity in crystalline solids with high electrical conductivity, a crucial requirement for high-performance thermoelectrics , continues to be a formidable challenge. A careful balance between electrical and thermal transport is essential for optimizing the thermoelectric performance. Despite this inherent trade-off, the experimental realization of an ideal thermoelectric material with a phonon-glass electron-crystal (PGEC) nature has rarely been achieved. Here, PGEC-like AgSbTe2 is demonstrated by tuning the atomic disorder upon Yb doping, which results in an outstanding thermoelectric performance with figure of merit, zT ≈ 2.4 at 573 K. Yb-doping-induced enhanced atomic ordering decreases the overlap between the hole and phonon mean free paths and consequently leads to a PGEC-like transport behavior in AgSbTe2 . A twofold increase in electrical mobility is observed while keeping the position of the Fermi level (EF ) nearly unchanged and corroborates the enhanced crystalline nature of the AgSbTe2 lattice upon Yb doping for electrical transport. The cation-ordered domains, lead to the formation of nanoscale superstructures (≈2 to 4 nm) that strongly scatter heat-carrying phonons, resulting in a temperature-independent glass-like thermal conductivity. The strategy paves the way for realizing high thermoelectric performance in various disordered crystals by making them amorphous to phonons while favoring crystal-like electrical transport.