Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 107(6): 1616-1630, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216173

RESUMO

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amônia/metabolismo , Cloreto de Amônio/farmacologia , Animais , Feminino , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação , Cebolas/citologia , Cebolas/genética , Oócitos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Vacúolos/metabolismo , Xenopus laevis
2.
Biochem Biophys Res Commun ; 609: 48-53, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35413539

RESUMO

Characteristics of peritubular myoid cells (PMCs) in sexually immature cattle remain largely unknown. Here, we report the character and behavior of peritubular cells expressing alpha smooth muscle actin (αSMA), a marker of PMCs in adult testes, in prepubertal testes procured from 5-months-old bulls. Elastin distribution around αSMA + PMCs was dim and discontinuous in prepubertal testes, but strong and continuous in adult testes. Fibroblast-specific protein 1 (FSP1) was rarely expressed in αSMA + PMCs of prepubertal testes, while in adult testes, majority of αSMA + PMCs were FSP1+. Moreover, αSMA + PMCs in prepubertal testes proliferated more actively than those in adult testes. In vitro culture of isolated seminiferous tubules from prepubertal testes revealed that αSMA + PMCs migrate from peritubular to interstitial area. Hence, in prepubertal bovine testes, (1) PMCs rarely portray fibroblast-like properties, (2) PMCs exhibit heterogeneity in FSP1 expression, (3) PMCs proliferate more actively than those in adult testes, and (4) PMCs have a potential to migrate to the interstitium. Our observations help to understand the maturation of PMCs and their involvement in bovine testicular function.


Assuntos
Actinas , Testículo , Actinas/metabolismo , Animais , Bovinos , Fibroblastos/metabolismo , Masculino , Músculo Liso/metabolismo , Túbulos Seminíferos/metabolismo , Testículo/metabolismo
3.
Reprod Med Biol ; 21(1): e12482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310655

RESUMO

Purpose: In humans, catecholamines (including dopamine) have been identified in semen and fallopian tubes, while dopamine D2 receptors (D2DR) are found in the sperm midpiece region. How dopamine dose affects human sperm function and whether dopamine treatment is useful in assisted reproductive technology is unclear. Methods: Sperm samples were obtained from patients with normal semen parameters undergoing fertility treatment. We investigated the effects of dopamine treatment on tyrosine phosphorylation and sperm motility. Sperm motility was analyzed using the computer-assisted sperm analysis (CASA) system. Results: This study revealed that various dopamine concentrations (0.1-100 µM) did not increase sperm tyrosine phosphorylation. Progressive motility increased substantially when treated with high concentrations of dopamine (10 and 100 µM) and was blocked by raclopride (a D2DR antagonist). After 24-h sperm culture, the addition of 10 µM dopamine significantly increased curvilinear velocity and amplitude of lateral head displacement, which are indicators of hyperactivation. Conclusion: Dopamine did not affect tyrosine phosphorylation, but increased sperm motility. High concentrations of dopamine were more effective to accelerate sperm motility in cases where sperm motile capacity was low.

4.
Reprod Med Biol ; 21(1): e12452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386379

RESUMO

Purpose: Spermiogenesis, the process of deformation of sperm head morphology and flagella formation, is a phenomenon unique to sperm. Axonemal dynein light chain proteins are localized to sperm flagella and are known to be involved in sperm motility. Here, we focused on the gene axonemal dynein light chain domain containing 1 (Axdnd1) with the aim to determine the function of its protein product AXDND1. Methods: To elucidate the role of AXDND1 in spermatogenesis, we generated Axdnd1 knockout (KO) mice using the CRISPR/Cas9 system. The generated mice were subjected to fertility tests and analyzed by immunohistochemistry. Result: The Axdnd1 KO mouse exhibited sterility caused by impaired spermiogenesis during the elongation step as well as abnormal nuclear shaping and manchette, which are essential for spermiogenesis. Moreover, AXDND1 showed enriched testicular expression and was localized from the mid-pachytene spermatocytes to the early spermatids. Conclusion: Axdnd1 is essential for spermatogenesis in the mouse testes. These findings improve our understanding of spermiogenesis and related defects. According to a recent report, deleterious heterozygous mutations in AXDND1 were found in non-obstructive azoospermia (NOA) patients. Therefore, Axdnd1 KO mice could be used as a model system for NOA, which will greatly contribute to future NOA treatment studies.

5.
Biochem Biophys Res Commun ; 562: 105-111, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34049203

RESUMO

Sperm head-to-head agglutination is a well-known known phenomenon in mammalian and non-mammalian species. Although several factors have been reported to induce sperm agglutination, information on the trigger and process of sperm detachment from the agglutination is scarce. Since hyperactivated motility is involved in bovine sperm detachment from the oviduct, we focused on caffeine, a well-known hyperactivation inducer, and aimed to determine the role of caffeine in sperm detachment from agglutination. Agglutination rate of bovine sperm was significantly decreased upon incubation with caffeine following pre-incubation without caffeine. Additionally, we observed that bovine sperm were detached from agglutination only when the medium contained caffeine. The detached sperm showed more asymmetrical flagellar beating compared to the undetached motile sperm, regardless of whether before or after the detachment. Intriguingly, some sperm that detached from agglutination re-agglutinated with different sperm agglutination. These findings indicated caffeine as a trigger for sperm detachment from the agglutination in bull. Furthermore, another well-known hyperactivation inducer, thimerosal, also significantly reduced the sperm agglutination rate. Overall, the study demonstrated the complete process of sperm detachment from sperm head-to-head agglutination and proposed that hyperactivated motility facilitates sperm detachment from another sperm. These findings would provide a better understanding of sperm physiology and fertilization process in mammals.


Assuntos
Cafeína/farmacologia , Aglutinação Espermática/efeitos dos fármacos , Cabeça do Espermatozoide/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Animais , Bovinos , Masculino , Progesterona/farmacologia , Timerosal/farmacologia
6.
Biochem Biophys Res Commun ; 558: 175-182, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33932777

RESUMO

The structure of the brain is dramatically altered during the critical period. Physiological substances (neurotransmitters, hormones, etc.) in the body fluctuate significantly before and after sexual maturation. Therefore, the effect of chemical exposure on the central nervous system often differs depending on the developmental stage and sex. We aimed to compare the behavioural effects that emerged from the administration of chemicals to mice of different life stages (immature or mature) and different sex (male or female). We administered mice with domoic acid (DA), a marine poison, and ibotenic acid (IA), found in poisonous mushrooms. These excitatory amino acids act as agonists for glutamate and are potent neurotoxins. Interestingly, the behavioural effects of these chemicals were completely different. Following DA administration, we observed memory deficits only in groups of male mice treated at maturity. Following IA administration, we observed deviations in emotional behaviour in groups of male mice treated at both immaturity and maturity. In contrast, few characteristic changes were detected in all groups of females. Our results support the theory that the behavioural effects of chemical administration vary considerably with developmental stages and sex. In conclusion, our findings promote better understanding of individual differences in excitatory chemical-induced neurotoxicity and provide evidence for future risk strategies and treatments.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ácido Ibotênico/toxicidade , Ácido Caínico/análogos & derivados , Administração Oral , Animais , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Ácido Ibotênico/administração & dosagem , Ácido Caínico/administração & dosagem , Ácido Caínico/toxicidade , Masculino , Toxinas Marinhas/administração & dosagem , Toxinas Marinhas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Neurotoxinas/administração & dosagem , Neurotoxinas/toxicidade , Fatores Sexuais , Maturidade Sexual/fisiologia
7.
J Reprod Dev ; 67(1): 59-66, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33390366

RESUMO

The structure of microtubules is essential for the fertilizing ability of spermatozoa. Acetylation of α-tubulin plays an important role in flagellar elongation and spermatozoa motility. Previous reports have suggested that alpha-tubulin N-acetyltransferase 1 (ATAT1) is the main acetyltransferase involved in the acetylation of α-tubulin. Although ATAT1 is reported to express in the testis, no information is available regarding its expression in elongated spermatids, epididymis, and mature spermatozoa. Hence, it remains unclear whether ATAT1 is involved in spermatozoa maturation and capacitation. Therefore, we evaluated the expression of ATAT1 in the mouse male reproductive system using immunostaining and western blotting. Our results showed that ATAT1 was expressed in spermatids during spermiogenesis in mouse testes, but its expression varied according to the seminiferous tubule stage. We observed ATAT1 in the cytoplasm of round spermatids, the flagella of elongated spermatids, and in the cytoplasm of step 16 spermatids, just before its release into the lumen. In addition, ATAT1 was expressed in epithelial cells of the epididymis. In spermatozoa of the cauda epididymis, ATAT1 expression was primarily observed in the midpiece of the spermatozoa. The localization of ATAT1 protein in the male germline was observed during spermiogenesis as well as during spermatozoa maturation. Our results suggest that ATAT1 may be involved in the formation of flagella and in the acetylation process, which has attracted attention in recent years regarding male infertility.


Assuntos
Acetiltransferases/metabolismo , Genitália Masculina/metabolismo , Proteínas dos Microtúbulos/metabolismo , Animais , Epididimo/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Testículo/metabolismo , Distribuição Tecidual
8.
J Reprod Dev ; 66(5): 421-425, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32493860

RESUMO

Previously, we revealed that neurotensin (NTS) derived from the oviduct and uterus can function during fertilization. However, little is known about NTS actions on the pre-implantation embryo after fertilization. Here, we found that pro-Nts mRNA is expressed in the oviduct and uterus during when preimplantation embryos develop and an increase in mRNA level in the uterus is induced by human chorionic gonadotropin (hCG) treatment. Expression of mRNA for two NTS receptors, Ntr1 and Ntr3, was found throughout these stages, whereas Ntr2 mRNA was not detected, suggesting that NTS signaling occurred through NTR1 and NTR3. Supplementation of 1, 10, 100 or 1000 nM NTS to embryo culture medium after fertilization showed that 100 nM NTS significantly improved the blastocyst formation. In comparison, the total number of cells and inner cell mass ratio of blastocysts was not significant different between the 0 nM and 100 nM NTS treatment groups. These results indicate that NTS has a positive effect upon preimplantation embryo development in vitro.


Assuntos
Blastocisto/efeitos dos fármacos , Neurotensina/farmacologia , Oviductos/metabolismo , Útero/metabolismo , Animais , Gonadotropina Coriônica/metabolismo , Meios de Cultura , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Camundongos , RNA Mensageiro/metabolismo , Receptores de Neurotensina/metabolismo , Transdução de Sinais
9.
J Reprod Dev ; 66(1): 41-48, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31761839

RESUMO

Gene-modified animals, including pigs, can be generated efficiently by introducing CRISPR associated protein 9 (CRISPR/Cas9) into zygotes. However, in many cases, these zygotes tend to become mosaic mutants with various different mutant cell types, making it difficult to analyze the phenotype of gene-modified founder animals. To reduce the mosaic mutations, we introduced three-prime repair exonuclease 2 (Trex2), an exonuclease that improves gene editing efficiency, into porcine zygotes along with CRISPR/Cas9 via electroporation. Although the rate of porcine blastocyst formation decreased due to electroporation (25.9 ± 4.6% vs. 41.2 ± 2.0%), co-delivery of murine Trex2 (mTrex2) mRNA with CRISPR/Cas9 did not affect it any further (25.9 ± 4.6% vs. 31.0 ± 4.6%). In addition, there was no significant difference in the diameter of blastocysts carrying CRISPR/Cas9 (164.7 ± 10.2 µm), and those with CRISPR/Cas9 + mTrex2 (151.9 ± 5.1 µm) as compared to those from the control group (178.9 ± 9.0 µm). These results revealed that mTrex2 did not affect the development of pre-implantation embryo. We also found bi-allelic, as well as mono-allelic, non-mosaic homozygous mutations in the blastocysts. Most importantly, co-delivery of mTrex2 mRNA with CRISPR/Cas9 increased non-mosaic mutant blastocysts (29.3 ± 4.5%) and reduced mosaic mutant blastocysts (70.7 ± 4.5%) as compared to CRISPR/Cas9 alone (5.6 ± 6.4% and 92.6 ± 8.6%, respectively). These data suggest that the co-delivery of CRISPR/Cas9 and mTrex2 is a useful method to suppress mosaic mutation.


Assuntos
Blastocisto/metabolismo , Proteína 9 Associada à CRISPR/genética , Desenvolvimento Embrionário/fisiologia , Exodesoxirribonucleases/genética , Edição de Genes/métodos , Mosaicismo , Fosfoproteínas/genética , Zigoto/metabolismo , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eletroporação , Mutação , Suínos
10.
J Reprod Dev ; 65(4): 327-334, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31178551

RESUMO

In mammals, ejaculated sperm acquire their fertilizing ability during migration through the female reproductive tract, which secretes several factors that contribute to sperm capacitation. Gamma-aminobutyric acid (GABA) is a well-known neurotransmitter in the central nervous system, but additionally enhances the sperm acrosome reaction in the rat and cow. However, the detailed effects of GABA concentration on sperm function remain unclear. In this study, we detected the presence of the GABA type A receptor (GABA A) in mouse epididymal sperm by western blot analysis and in the sperm acrosome by immunocytochemistry. We also investigated the effects of GABA on sperm fertilizing ability. We found that GABA facilitated the tyrosine phosphorylation of sperm proteins, which is an index of sperm capacitation. GABA also promoted the acrosome reaction, which was suppressed by a selective GABA A receptor antagonist. We then found that the effective GABA concentration for the acrosome reaction corresponds to sperm concentration, but we did not detect any marked effect of GABA on sperm motility using a computer-assisted sperm analysis system. Using immunohistochemistry, we also detected GABA expression in the epithelia of the mouse uterus and oviduct. Furthermore, we found that the mRNA levels of glutamate decarboxylase (Gad), which generates GABA from L-glutamate, were higher in the oviduct than in the uterus, and that Gad mRNA levels were higher at estrus than at the diestrus stage. These results indicate that the GABA concentration can act as a modulator of the acrosome reaction and sperm capacitation in the female reproductive tract.


Assuntos
Capacitação Espermática/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Reação Acrossômica/efeitos dos fármacos , Animais , Feminino , Fertilização/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos
11.
J Reprod Dev ; 65(2): 147-153, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30662011

RESUMO

Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction.


Assuntos
Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Fertilização in vitro , Neurotensina/farmacologia , Receptores de Neurotensina/fisiologia , Espermatozoides/efeitos dos fármacos , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/genética , Animais , Blastocisto/fisiologia , Bovinos/embriologia , Células Cultivadas , Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Fertilização/efeitos dos fármacos , Fertilização/genética , Fertilização in vitro/veterinária , Masculino , Neurotensina/metabolismo , Neurotensina/fisiologia , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Capacitação Espermática/efeitos dos fármacos , Capacitação Espermática/genética , Espermatozoides/fisiologia
12.
J Appl Toxicol ; 39(12): 1651-1662, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415104

RESUMO

Permethrin, a pyrethroid chemical, is widely used as a pesticide because of its rapid insecticidal activity. Although permethrin is considered to exert very low toxicity in mammals, the effects of early, low-level, chronic exposure on the adult central nervous system are unclear. In this study, we investigated the effects of low-level, chronic permethrin exposure in early life on the brain functions of adult mice, using environmentally relevant concentrations. We exposed mice to the acceptable daily intake level of permethrin (0.3 ppm) in drinking water during the prenatal and postnatal periods. We then examined the effects on the central nervous system in adult male offspring. In the permethrin group, we detected behavior that displayed incomplete adaptation to a novel environment, as well as an impairment in learning and memory. In addition, immunohistochemical analysis revealed an increase in doublecortin- (an immature neuron marker) positive cells in the hippocampal dentate gyrus in the permethrin exposure group compared with the control group. Additionally, in the permethrin exposure group there was a decrease in astrocyte number in the hilus of the dentate gyrus, and remaining astrocytes were often irregularly shaped. These results suggest that exposure to permethrin at low levels in early life affects the formation of the neural circuit base and behavior after maturation. Therefore, in the central nervous system of male mice, low-level, chronic permethrin exposure during the prenatal and postnatal periods has effects that were not expected based on the known effects of permethrin exposure in mature animals.


Assuntos
Inseticidas/toxicidade , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Permetrina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/patologia , Neurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
13.
Zygote ; 27(4): 250-254, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31397238

RESUMO

Oocytes of B6D2F1 (BDF1) mice are often used as recipients for intracytoplasmic sperm injection because of their cell membrane resistance against capillary penetration. It is assumed that oocytes of BDF1 mice have superior traits because of their hybrid vigour. However, the mechanisms of hybrid vigour are unclear. In this study, we focused on the membrane resistance of MII stage oocytes against changes in extracellular osmotic pressure. As a result, MII stage oocytes of inbred C57BL/6 and DBA/2 mice showed high tolerance in either a hypertonic or a hypotonic environment. Conversely, MII stage oocytes of hybrid BDF1 and D2B6F1 mice showed high tolerance in both hypertonic and hypotonic environments. Therefore, it is considered that MII stage oocytes of hybrid mice have superior traits than those of inbred mice. Our findings demonstrated that the hybrid vigour exists in the form of resistance to extracellular osmotic environment in hybrid MII stage oocytes.


Assuntos
Adaptação Fisiológica/genética , Vigor Híbrido/genética , Metáfase/genética , Oócitos/metabolismo , Pressão Osmótica , Animais , Hibridização Genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Oócitos/citologia , Injeções de Esperma Intracitoplásmicas
14.
Reprod Med Biol ; 18(3): 247-255, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31312103

RESUMO

BACKGROUND: Germ cells represent one of the typical cell types that moves over a long period of time and large distance within the animal body. To continue its life cycle, germ cells must migrate to spatially distinct locations for proper development. Defects in such migration processes can result in infertility. Thus, for more than a century, the principles of germ cell migration have been a focus of interest in the field of reproductive biology. METHODS: Based on published reports (mainly from rodents), investigations of germ cell migration before releasing from the body, including primordial germ cells (PGCs), gonocytes, spermatogonia, and immature spermatozoon, were summarized. MAIN FINDINGS: Germ cells migrate with various patterns, with each migration step regulated by distinct mechanisms. During development, PGCs actively and passively migrate from the extraembryonic region toward genital ridges through the hindgut epithelium. After sex determination, male germline cells migrate heterogeneously in a developmental stage-dependent manner within the testis. CONCLUSION: During migration, there are multiple gates that disallow germ cells from re-entering the proper developmental pathway after wandering off the original migration path. The presence of gates may ensure the robustness of germ cell development during development, growth, and homeostasis.

15.
Biochem Biophys Res Commun ; 498(3): 674-679, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524425

RESUMO

Testicular toxicity is a frequent adverse effect of cancer chemotherapy that has no effective clinical biomarker. To find new biomarkers, we focused on epigenetic mechanisms in the male germline. We investigated the DNA methylation status of the male germline during testicular toxicity induced by doxorubicin (DXR), a widely used anticancer agent. We established mouse models of early stage testicular toxicity and testicular pre-toxicity by the administration of 0.2 mg/kg and 0.02 mg/kg DXR, respectively, twice weekly for 5 weeks. Histological analysis showed sparse abnormalities in testicular tissue; however, western blotting analysis revealed reduced testicular expression levels of DNA methyltransferases DNMT3a and DNMT3b in both DXR-treated groups. Interestingly, comprehensive sperm DNA methylation analysis using Methyl-CpG binding domain protein-enriched genome sequencing revealed that hypomethylation was the most frequent change induced by DXR. These findings suggest that sperm DNA methylation status may be used as an early diagnostic marker for testicular changes not detected by conventional toxicity analysis.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Metilação de DNA/efeitos dos fármacos , Doxorrubicina/toxicidade , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , DNA (Citosina-5-)-Metiltransferases/análise , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia , DNA Metiltransferase 3B
16.
Biochem Biophys Res Commun ; 497(1): 388-393, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29432730

RESUMO

A prolyl isomerase Pin1 deficient (Pin1-/-) male mice had severe testicular atrophy. We investigated the function of Pin1 in spermatogenesis by analyzing the Pin1-/- mice at reproductive age. Pin1-/- mice had lessαPLZF positive spermatogonia (undifferentiated spermatogonia) than wild type (WT). Nevertheless, the Pin1-/- testis contained approximately the same number of GFRα1 positive spermatogonia (SSCs in steady state) as the WT testis. Furthermore, degeneration of the spermatogenia appeared in seminiferous tubules of 10 months old Pin1-/- mouse testis, and abnormal shape GFRα1 positive spermatogonia were observed. In Pin1-/- spermatogonia, the ratio of the phospho-histone H3 positive cells (mitotic cells) in GFRα1-positive spermatogonia was higher than that of WT. These results suggest that Pin1 promotes the progression of the mitotic cell cycle of SSC in steady-state, which is required for the sperm production from SSCs.


Assuntos
Mitose/fisiologia , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Espermatogênese/fisiologia , Espermatogônias/citologia , Espermatogônias/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Camundongos Knockout
17.
Biologicals ; 55: 43-52, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30017557

RESUMO

Recently, many vaccine adjuvants have been developed; however, most of the newly developed adjuvants have been dropped out of preclinical and clinical trials owing to their unexpected toxicity. Thus, the development of highly quantitative and comparable screening methods for evaluating adjuvant safety is needed. In a previous study, we identified specific biomarkers for evaluating the safety of an intranasal influenza vaccine with CpG K3 adjuvant by comparing biomarker expression. We hypothesized that these biomarkers might be useful for screening newly developed adjuvant safety. We compared the expression of biomarkers in mouse lungs by the intranasal administration of 4 types of adjuvants: Alum, Pam3CSK4, NanoSiO2, and DMXAA with subvirion influenza vaccine. The control adjuvant alum did not show any significant increase in biomarker expression or preclinical parameters; however, NanoSiO2 and Pam3CSK4 increased the expression of biomarkers, such as Timp1 and Csf1. DMXAA at 300 µg induced the expression of over 80% of biomarkers. Hierarchical clustering analysis showed that 300 µg DMXAA was classified in the toxicity reference whole-particle influenza vaccine cluster. FACS analysis to confirm specific phenotypes that the number of T cells decreased in DMXAA-treated mouse lungs. Thus, our biomarkers are useful for initial adjuvant safety and toxicity screening.


Assuntos
Adjuvantes Imunológicos , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Administração Intranasal , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
18.
Reprod Med Biol ; 17(2): 143-148, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29692671

RESUMO

PURPOSE: As disturbed mitochondrial distribution is thought to be a cause of the aging of oocytes, it was investigated whether oxidizing agents exert harmful effects on nuclear maturation and mitochondrial cluster formation in murine oocytes and whether antioxidants could rescue such harmful effects in vitro. METHODS: Oocytes were obtained from female Institute of Cancer Research mice 48 h after an intraperitoneal injection of 7.5 IU pregnant mare serum gonadotropin. The oocytes were cultured with potassium bromate, an oxidizing agent, in the presence or absence of the antioxidant, resveratrol. After 12 h, the nuclear phases and mitochondrial distribution were observed. RESULTS: Significantly decreased rates of metaphase II (MII) oocytes were observed with 750 µM and 1000 µM of potassium bromate, while a significant increase in abnormal mitochondrial clusters was induced at 500 µM, 750 µM, and 1,000 µM. The addition of 10 µM or 20 µM resveratrol improved both MII maturity and the cluster formation rates in the presence of potassium bromate. CONCLUSIONS: The addition of potassium bromate reduced MII maturity rates and induced abnormal mitochondrial cluster formation. This effect was alleviated by the antioxidant, resveratrol. The in vitro model used herein is useful for investigating the functions of antioxidants in the aging of oocytes.

19.
J Reprod Dev ; 63(5): 473-480, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28701622

RESUMO

Sperm sorting by flow cytometry is a useful technology in the bovine industry, but the conception rates after artificial insemination using sex-sorted sperm are lower than when using the un-sorted sperm. In this study, we have investigated the causes for these low conception rates. We have focused on changes caused by flow cytometry to the glycocalyx, which forms the outermost surface of the sperm membrane. We have also evaluated the effects of capacitation on the glycocalyx since capacitation involves a redistribution of the sperm membrane that is vital for successful fertilization and conception. Lectin histochemistry was used to visualize the structure of the sperm glycocalyx. Lectin-staining sites were examined in non-treated sperm, sex-sorted sperm, and capacitated sperm. We have detected six different staining patterns related to different labeling regions of the sperm. Phaseolus vulgaris-erythroagglutinin (PHA-E) lectin-staining patterns of non-treated sperm were very different from those observed for sex-sorted sperm or capacitated sperm, suggesting that both, sex sorting by flow cytometry and the capacitation process affected the glycocalyx structures in the sperm. In addition, the total tyrosine-phosphorylation level in sex-sorted sperm was significantly higher than that in the non-treated sperm. Therefore, we concluded that the unexpected capacitation of bovine sperm during flow cytometry is associated with changes in the glycocalyx. Since premature capacitation leads to low conception rates, this unexpected capacitation could be a cause of low conception rates after artificial insemination using sex-sorted sperm.


Assuntos
Citometria de Fluxo , Congelamento , Glicocálix/química , Capacitação Espermática/fisiologia , Espermatozoides/citologia , Espermatozoides/ultraestrutura , Animais , Bovinos , Citometria de Fluxo/métodos , Glicocálix/metabolismo , Glicocálix/ultraestrutura , Lectinas/metabolismo , Masculino , Análise do Sêmen , Preservação do Sêmen/efeitos adversos , Preservação do Sêmen/métodos , Pré-Seleção do Sexo/métodos , Espermatozoides/química , Espermatozoides/metabolismo , Distribuição Tecidual
20.
Biochem Biophys Res Commun ; 478(2): 592-8, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27473657

RESUMO

D1Pas1 is a mouse autosomal DEAD-box RNA helicase expressed predominantly in the testis. To assess its possible function, we generated D1Pas1-deficient mice using embryonic stem cells with a targeted D1Pas1 allele. Deletion of D1Pas1 did not cause noticeable embryonic defects or death, indicating that D1Pas1 is not essential for embryogenesis. Whereas homozygous knockout female mice showed normal reproductive performance, homozygous knockout male mice were completely sterile. The seminiferous epithelium of D1Pas1-deficient males contained no spermatids or spermatozoa because of spermatogenic arrest at the late pachytene stage. Upregulation of retrotransposons such as LINE-1 was not found in D1Pas1-deficient males, unlike males lacking Mvh, another testicular DEAD-box RNA helicase. Meiotic chromosome behavior in developing spermatocytes of D1Pas1-deficient males was indistinguishable from that in wild-type males, at least until synaptonemal complex formation. Thus, mouse D1Pas1 is the first-identified DEAD-box RNA helicase that plays critical roles in the final step of the first meiotic prophase in male germ cells.


Assuntos
RNA Helicases DEAD-box/genética , Meiose , Espermatogênese , Animais , RNA Helicases DEAD-box/metabolismo , Feminino , Técnicas de Inativação de Genes , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retroelementos , Espermatócitos/citologia , Espermatócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA