Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 41: 128025, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33839251

RESUMO

The molecular chaperone, Heat Shock Protein 70 (Hsp70), is an emerging drug target for neurodegenerative diseases, because of its ability to promote degradation of microtubule-associated protein tau (MAPT/tau). Recently, we reported YM-08 as a brain penetrant, allosteric Hsp70 inhibitor, which reduces tau levels. However, the benzothiazole moiety of YM-08 is vulnerable to metabolism by CYP3A4, limiting its further application as a chemical probe. In this manuscript, we designed and synthesized seventeen YM-08 derivatives by systematically introducing halogen atoms to the benzothiazole ring and shifting the position of the heteroatom in a distal pyridine. In microsome assays, we found that compound JG-23 has 12-fold better metabolic stability and it retained the ability to reduce tau levels in two cell-based models. These chemical probes of Hsp70 are expected to be useful tools for studying tau homeostasis.


Assuntos
Benzotiazóis/farmacologia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Tiazolidinas/farmacologia , Proteínas tau/antagonistas & inibidores , Benzotiazóis/síntese química , Benzotiazóis/química , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Proteínas tau/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(8): 2401-6, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675515

RESUMO

Since its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy. Here, we demonstrate a strategy for the chemical modification of insulin intended to promote both long-lasting and glucose-responsive activity through the incorporation of an aliphatic domain to facilitate hydrophobic interactions, as well as a phenylboronic acid for glucose sensing. These synthetic insulin derivatives enable rapid reversal of blood glucose in a diabetic mouse model following glucose challenge, with some derivatives responding to repeated glucose challenges over a 13-h period. The best-performing insulin derivative provides glucose control that is superior to native insulin, with responsiveness to glucose challenge improved over a clinically used long-acting insulin derivative. Moreover, continuous glucose monitoring reveals responsiveness matching that of a healthy pancreas. This synthetic approach to insulin modification could afford both long-term and glucose-mediated insulin activity, thereby reducing the number of administrations and improving the fidelity of glycemic control for insulin therapy. The described work is to our knowledge the first demonstration of a glucose-binding modified insulin molecule with glucose-responsive activity verified in vivo.


Assuntos
Ácidos Borônicos/química , Glucose/farmacologia , Insulina/química , Insulina/uso terapêutico , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Insulina/administração & dosagem , Camundongos , Estreptozocina
3.
Nano Lett ; 16(2): 842-8, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26727632

RESUMO

Safe and effective delivery is required for siRNA and mRNA-based therapeutics to reach their potential. Here, we report on the development of poly(glycoamidoamine) brush nanoparticles as delivery vehicles for siRNA and mRNA. These polymers were capable of significant delivery of siRNA against FVII and mRNA-encoding erythropoietin (EPO) in mice. Importantly, these nanoparticles were well-tolerated at their effective dose based on analysis of tissue histology, systemic cytokine levels, and liver enzyme chemistry. The polymer brush nanoparticles reported here are promising for therapeutic applications.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Nanopartículas/administração & dosagem , RNA Mensageiro/administração & dosagem , Animais , Eritropoetina/antagonistas & inibidores , Eritropoetina/genética , Fator VII/genética , Humanos , Camundongos , Nanopartículas/efeitos adversos , RNA Interferente Pequeno/administração & dosagem
4.
Langmuir ; 32(34): 8743-7, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27455412

RESUMO

Injectable hydrogels have been widely used for a number of biomedical applications. Here, we report a new strategy to form an injectable and glucose-responsive hydrogel using the boronic acid-glucose complexation. The ratio of boronic acid and glucose functional groups is critical for hydrogel formation. In our system, polymers with 10-60% boronic acid, with the balance being glucose-modified, are favorable to form hydrogels. These hydrogels are shear-thinning and self-healing, recovering from shear-induced flow to a gel state within seconds. More importantly, these polymers displayed glucose-responsive release of an encapsulated model drug. The hydrogel reported here is an injectable and glucose-responsive hydrogel constructed from the complexation of boronic acid and glucose within a single component polymeric material.


Assuntos
Ácidos Borônicos/química , Glucose/química , Hidrogéis/química , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Injeções , Cinética , Polimerização , Reologia , Rodaminas/química
5.
Mol Ther ; 19(11): 1981-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21829177

RESUMO

For effective airway gene therapy of cystic fibrosis (CF), inhaled gene carriers must first penetrate the hyperviscoelastic sputum covering the epithelium. Whether clinically studied gene carriers can penetrate CF sputum remains unknown. Here, we measured the diffusion of a clinically tested nonviral gene carrier, composed of poly-l-lysine conjugated with a 10 kDa polyethylene glycol segment (CK(30)PEG(10k)). We found that CK(30)PEG(10k)/DNA nanoparticles were trapped in CF sputum. To improve gene carrier diffusion across sputum, we tested adjuvant regimens consisting of N-acetylcysteine (NAC), recombinant human DNase (rhDNase) or NAC together with rhDNase. While rhDNase alone did not enhance gene carrier diffusion, NAC and NAC + rhDNase increased average effective diffusivities by 6-fold and 13-fold, respectively, leading to markedly greater fractions of gene carriers that may penetrate sputum layers. We further tested the adjuvant effects of NAC in the airways of mice with Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced mucus hypersecretion. Intranasal dosing of NAC prior to CK(30)PEG(10k)/DNA nanoparticles enhanced gene expression by up to ~12-fold compared to saline control, reaching levels observed in the lungs of mice without LPS challenge. Our findings suggest that a promising synthetic nanoparticle gene carrier may transfer genes substantially more effectively to lungs of CF patients if administered following adjuvant mucolytic therapy with NAC or NAC + rhDNase.


Assuntos
Acetilcisteína/farmacologia , Fibrose Cística/metabolismo , DNA/metabolismo , Expectorantes/farmacologia , Nanopartículas/química , Escarro/efeitos dos fármacos , Transdução Genética/métodos , Adulto , Animais , Biopolímeros/química , Biopolímeros/genética , Biopolímeros/metabolismo , Fibrose Cística/terapia , DNA/química , Difusão/efeitos dos fármacos , Feminino , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polilisina/química , Polilisina/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Viscosidade/efeitos dos fármacos , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 106(46): 19268-73, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19901335

RESUMO

Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate highly viscoelastic human mucus, such as non-ovulatory cervicovaginal mucus, at a significant rate. We prepared nanoparticles composed of a biodegradable diblock copolymer of poly(sebacic acid) and poly(ethylene glycol) (PSA-PEG), both of which are routinely used in humans. In fresh undiluted human cervicovaginal mucus (CVM), which has a bulk viscosity approximately 1,800-fold higher than water at low shear, PSA-PEG nanoparticles diffused at an average speed only 12-fold lower than the same particles in pure water. In contrast, similarly sized biodegradable nanoparticles composed of PSA or poly(lactic-co-glycolic acid) (PLGA) diffused at least 3,300-fold slower in CVM than in water. PSA-PEG particles also rapidly penetrated sputum expectorated from the lungs of patients with cystic fibrosis, a disease characterized by hyperviscoelastic mucus secretions. Rapid nanoparticle transport in mucus is made possible by the efficient partitioning of PEG to the particle surface during formulation. Biodegradable polymeric nanoparticles capable of overcoming human mucus barriers and providing sustained drug release open significant opportunities for improved drug and gene delivery at mucosal surfaces.


Assuntos
Anidridos/metabolismo , Muco do Colo Uterino/metabolismo , Portadores de Fármacos/metabolismo , Nanopartículas , Polietilenoglicóis/metabolismo , Anidridos/química , Fibrose Cística/metabolismo , Portadores de Fármacos/química , Feminino , Humanos , Polietilenoglicóis/química , Escarro/metabolismo
7.
BMC Cancer ; 10: 29, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20122172

RESUMO

BACKGROUND: Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. METHODS: One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. RESULTS: Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. CONCLUSIONS: The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.


Assuntos
Colágeno Tipo IV/metabolismo , Neoplasias Pulmonares/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Animais , Antineoplásicos/farmacologia , Movimento Celular , Proliferação de Células , Colágeno Tipo IV/química , Colágeno Tipo IV/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/citologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Transplante de Neoplasias , Neovascularização Patológica , Fragmentos de Peptídeos/química , Peptídeos/química , Veias Umbilicais/patologia
8.
Glycoconj J ; 27(4): 445-59, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20458533

RESUMO

Carbohydrates are attractive candidates for drug development because sugars are involved in many, if not most, complex human diseases including cancer, immune dysfunction, congenital disorders, and infectious diseases. Unfortunately, potential therapeutic benefits of sugar-based drugs are offset by poor pharmacologic properties that include rapid serum clearance, poor cellular uptake, and relatively high concentrations required for efficacy. To address these issues, pilot studies are reported here where 'Bu(4)ManNAc', a short chain fatty acid-monosaccharide hybrid molecule with anti-cancer activities, was encapsulated in polyethylene glycol-sebacic acid (PEG-SA) polymers. Sustained release of biologically active compound was achieved for over a week from drug-laden polymer formulated into microparticles thus offering a dramatic improvement over the twice daily administration currently used for in vivo studies. In a second strategy, a tributanoylated ManNAc analog (3,4,6-O-Bu(3)ManNAc) with anti-cancer activities was covalently linked to PEG-SA and formulated into nanoparticles suitable for drug delivery; once again release of biologically active compound was demonstrated.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Ácidos Graxos Voláteis/química , Hexosaminas/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Ácidos Decanoicos/química , Preparações de Ação Retardada , Ácidos Dicarboxílicos/química , Hexosaminas/síntese química , Hexosaminas/química , Hexosaminas/farmacologia , Nanopartículas , Polietilenoglicóis/química , Polivinil/química
9.
ACS Med Chem Lett ; 11(2): 127-132, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32071678

RESUMO

Tau prions feature in the brains of patients suffering from Alzheimer's disease and other tauopathies. For the development of therapeutics that target the replication of tau prions, a high-content, fluorescence-based cell assay was developed. Using this high-content phenotypic screen for nascent tau prion formation, a 4-piperazine isoquinoline compound (1) was identified as a hit with an EC50 value of 390 nM and 0.04 K p,uu. Analogs were synthesized using a hypothesis-based approach to improve potency and in vivo brain penetration resulting in compound 25 (EC50 = 15 nM; K p,uu = 0.63). We investigated the mechanism of action of this series and found that a small set of active compounds were also CDK8 inhibitors.

10.
Sci Adv ; 3(4): e1601556, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28435870

RESUMO

Mucoadhesive particles (MAP) have been widely explored for pulmonary drug delivery because of their perceived benefits in improving particle residence in the lungs. However, retention of particles adhesively trapped in airway mucus may be limited by physiologic mucus clearance mechanisms. In contrast, particles that avoid mucoadhesion and have diameters smaller than mucus mesh spacings rapidly penetrate mucus layers [mucus-penetrating particles (MPP)], which we hypothesized would provide prolonged lung retention compared to MAP. We compared in vivo behaviors of variously sized, polystyrene-based MAP and MPP in the lungs following inhalation. MAP, regardless of particle size, were aggregated and poorly distributed throughout the airways, leading to rapid clearance from the lungs. Conversely, MPP as large as 300 nm exhibited uniform distribution and markedly enhanced retention compared to size-matched MAP. On the basis of these findings, we formulated biodegradable MPP (b-MPP) with an average diameter of <300 nm and examined their behavior following inhalation relative to similarly sized biodegradable MAP (b-MAP). Although b-MPP diffused rapidly through human airway mucus ex vivo, b-MAP did not. Rapid b-MPP movements in mucus ex vivo correlated to a more uniform distribution within the airways and enhanced lung retention time as compared to b-MAP. Furthermore, inhalation of b-MPP loaded with dexamethasone sodium phosphate (DP) significantly reduced inflammation in a mouse model of acute lung inflammation compared to both carrier-free DP and DP-loaded MAP. These studies provide a careful head-to-head comparison of MAP versus MPP following inhalation and challenge a long-standing dogma that favored the use of MAP for pulmonary drug delivery.


Assuntos
Plásticos Biodegradáveis , Dexametasona , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Pneumonia/tratamento farmacológico , Mucosa Respiratória/metabolismo , Administração por Inalação , Animais , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Dexametasona/química , Dexametasona/farmacocinética , Dexametasona/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/metabolismo , Pneumonia/patologia , Mucosa Respiratória/patologia
11.
J Leukoc Biol ; 100(2): 253-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26965635

RESUMO

Neutrophils are constantly generated from hematopoietic stem and progenitor cells in the bone marrow to maintain high numbers in circulation. A considerable number of neutrophils and their progenitors have been shown to be present in the spleen too; however, their exact role in this organ remains unclear. Herein, we sought to study the function of splenic neutrophils and their progenitors using a mouse model for sterile, peritoneal inflammation. In this microcapsule device implantation model, we show chronic neutrophil presence at implant sites, with recruitment from circulation as the primary mechanism for their prevalence in the peritoneal exudate. Furthermore, we demonstrate that progenitor populations in the spleen play a key role in maintaining elevated neutrophil numbers. Our results provide new insight into the role for splenic neutrophils and their progenitors and establish a model to study neutrophil function during sterile inflammation.


Assuntos
Medula Óssea/imunologia , Inflamação/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Baço/imunologia , Células-Tronco/imunologia , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Doença Crônica , Citocinas/metabolismo , Feminino , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Neutrófilos/metabolismo , Fagocitose , Próteses e Implantes/efeitos adversos , Baço/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
Nat Rev Drug Discov ; 14(1): 45-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25430866

RESUMO

Nanotechnology-based approaches hold substantial potential for improving the care of patients with diabetes. Nanoparticles are being developed as imaging contrast agents to assist in the early diagnosis of type 1 diabetes. Glucose nanosensors are being incorporated in implantable devices that enable more accurate and patient-friendly real-time tracking of blood glucose levels, and are also providing the basis for glucose-responsive nanoparticles that better mimic the body's physiological needs for insulin. Finally, nanotechnology is being used in non-invasive approaches to insulin delivery and to engineer more effective vaccine, cell and gene therapies for type 1 diabetes. Here, we analyse the current state of these approaches and discuss key issues for their translation to clinical practice.


Assuntos
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Nanomedicina/métodos , Nanopartículas/administração & dosagem , Animais , Glicemia/metabolismo , Diabetes Mellitus/sangue , Gerenciamento Clínico , Sistemas de Liberação de Medicamentos/métodos , Humanos
13.
Ann Biomed Eng ; 43(3): 641-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25201605

RESUMO

Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Humanos
14.
PLoS One ; 10(9): e0137550, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355958

RESUMO

In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs) on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.


Assuntos
Neutrófilos/imunologia , Neutrófilos/metabolismo , Próteses e Implantes/efeitos adversos , Animais , Citocinas/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Fibrose , Mediadores da Inflamação/metabolismo , Contagem de Leucócitos , Camundongos , Modelos Animais , Infiltração de Neutrófilos/imunologia , Fagocitose/imunologia
15.
Adv Healthc Mater ; 3(3): 338-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24039157

RESUMO

Here, efforts toward the development of a microneedle-based glucose sensor or "smart patch" for intradermal glucose sensing are described. Metallic microneedle array electrodes, conducting polymers, and glucose oxidase form the sensor platform. This work represents the first steps toward the development of painless, transdermal-sensing devices for continuous glucose monitoring.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrodos , Glucose/análise , Adesivo Transdérmico , Desenho de Equipamento , Glucose Oxidase/química , Humanos , Agulhas , Polímeros/química
16.
Adv Healthc Mater ; 3(9): 1392-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24623658

RESUMO

New lipid-like nanomaterials are developed to simultaneously regulate expression of multiple genes. Self-assembled nanoparticles are capable of efficiently encapsulating pDNA and siRNA. These nanoparticles are shown to induce simultaneous gene expression and silencing both in vitro and in vivo.


Assuntos
Expressão Gênica , Inativação Gênica , Lipídeos/química , Nanoestruturas/química , Transfecção/métodos , Animais , Células HeLa , Humanos , Lipídeos/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Triazinas/química
17.
Drug Deliv Transl Res ; 4(2): 203-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24816829

RESUMO

Intraperitoneal (IP) chemotherapy is more effective than systemic chemotherapy for treating advanced ovarian cancer, but is typically associated with severe complications due to high dose, frequent administration schedule, and use of non-biocompatible excipients/delivery vehicles. Here, we developed paclitaxel (PTX)-loaded microspheres composed of di-block copolymers of poly(ethylene glycol) and poly(sebacic acid) (PEG-PSA) for safe and sustained IP chemotherapy. PEG-PSA microspheres provided efficient loading (~ 13% w/w) and prolonged release (~ 13 days) of PTX. In a murine ovarian cancer model, a single dose of IP PTX/PEG-PSA particles effectively suppressed tumor growth for more than 40 days and extended the median survival time to 75 days compared to treatments with Taxol(®) (47 days) or IP placebo particles (34 days). IP PTX/PEG-PSA was well tolerated, with only minimal to mild inflammation. Our findings support PTX/PEG-PSA microspheres as a promising drug delivery platform for IP therapy of ovarian cancer, and potentially other metastatic peritoneal cancers.

18.
Adv Healthc Mater ; 3(7): 1044-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24339398

RESUMO

Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early-stage cervical cancer. It is hypothesized here that drug-loaded nanoparticles that rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract will more effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner compared with nanoparticles that do not efficiently penetrate CVM. Paclitaxel-loaded nanoparticles are developed, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. A mouse model is further employed with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles, or CP) and similar particles coated with Pluronic F127 (mucus-penetrating particles, or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared with unencapsulated paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface.


Assuntos
Antineoplásicos/farmacocinética , Paclitaxel/farmacocinética , Neoplasias do Colo do Útero/metabolismo , Vagina/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Feminino , Camundongos , Muco/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/farmacologia , Propriedades de Superfície , Análise de Sobrevida
19.
ACS Nano ; 7(8): 6758-66, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23834678

RESUMO

A glucose-responsive closed-loop insulin delivery system represents the ideal treatment of type 1 diabetes mellitus. In this study, we develop uniform injectable microgels for controlled glucose-responsive release of insulin. Monodisperse microgels (256 ± 18 µm), consisting of a pH-responsive chitosan matrix, enzyme nanocapsules, and recombinant human insulin, were fabricated through a one-step electrospray procedure. Glucose-specific enzymes were covalently encapsulated into the nanocapsules to improve enzymatic stability by protecting from denaturation and immunogenicity as well as to minimize loss due to diffusion from the matrix. The microgel system swelled when subjected to hyperglycemic conditions, as a result of the enzymatic conversion of glucose into gluconic acid and protonation of the chitosan network. Acting as a self-regulating valve system, microgels were adjusted to release insulin at basal release rates under normoglycemic conditions and at higher rates under hyperglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1 diabetes.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Enzimas/química , Glucose/química , Insulina/administração & dosagem , Animais , Glicemia/análise , Catálise , Quitosana/química , Modelos Animais de Doenças , Géis , Gluconatos/química , Humanos , Concentração de Íons de Hidrogênio , Hiperglicemia/tratamento farmacológico , Insulina/química , Camundongos , Microscopia Eletrônica de Transmissão , Nanocápsulas/química , Proteínas Recombinantes/química , Fatores de Tempo
20.
Microsc Res Tech ; 75(5): 691-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22095650

RESUMO

Using live-cell confocal microscopy and particle tracking technology, the simultaneous transport of intracellular vesicles of the endo-lysosomal pathway and nonviral polyethylenimine (PEI)/DNA nanocomplexes was investigated. Due to potential problems associated with the use of acid-sensitive probes in combination with a gene vector that is hypothesized to buffer the pH of intracellular vesicles, the biological location of PEI/DNA gene vectors was revealed by probing their trafficking in cells expressing fluorescent versions of either early endosome antigen 1, a protein that localizes to early endosomes, or Niemann Pick C1, a protein that localizes to late endosomes and lysosomes. Studies directly show that PEI/DNA nanoparticles are actively transported within both early and late endosomes, and display similar overall transport rates in each. Additionally, gene vector transfer between endosomes is observed. Over time post-transfection, gene vectors accumulate in late endosomes/lysosomes; however, real-time escape of vectors from membrane-bound vesicles is not observed.


Assuntos
Endossomos/química , Técnicas de Transferência de Genes , Lisossomos/química , Microscopia Confocal/métodos , Nanopartículas/análise , Animais , Células COS , Chlorocebus aethiops , Endossomos/metabolismo , Lisossomos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA