Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(1): 82-90, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542057

RESUMO

Cesium lead halide perovskite nanocrystals (PNCs) exhibit promising prospects for application in optoelectronic devices. However, electroactivated near-infrared (NIR) PNC light-emitting diodes (LEDs) with emission peaks over 800 nm have not been achieved. Herein, we demonstrate the electroactivated NIR PNC LEDs based on Yb3+-doped CsPb(Cl1-xBrx)3 PNCs with extraordinary high NIR photoluminescence quantum yields over 170%. The fabricated NIR LEDs possess an irradiance of 584.7 µW cm-2, an EQE of 1.2%, and a turn-on voltage of 3.1 V. The ultrafast quantum cutting process from the PNC host to Yb3+ has been revealed as the main mechanism of electroluminescence (EL)-activated Yb3+ for the first time via exploring how the trend between the EL intensity of PNC and Yb3+ varies with different voltages along with the tendency of temperature- and doping-concentration-dependent PL and EL spectra. This work will extend the application of PNCs to optical communication, night-vision devices, and biomedical imaging.

2.
Clin Immunol ; 257: 109840, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37939913

RESUMO

IgA nephropathy (IgAN) is an essential cause of kidney failure and end-stage kidney disease worldwide. Mesangial hypercellularity is an important characteristic of IgAN, but the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress is a series of stress responses to restore the function of endoplasmic reticulum. We aimed to explore how ER stress functioned in kidneys of IgAN. We first examined ER stress in IgAN kidneys in vivo and in vitro, by testing the levels of ER stress associated proteins (BIP, p-eIF2α and ATF4). Our results showed that ER stress was activated in IgAN patients, mice and cell model. ER stress activation was related to the distribution of IgA deposition and the degree of mesangial proliferation. To determine the role of ER stress in mesangial cell (MC) proliferation of IgAN, we then tested the levels of ER stress and MC proliferation (cyclin D1, cell viability and cell cycle) through inhibiting ER stress associated proteins. After inhibiting ER stress associated proteins, ER stress was inactivated and cell proliferation was inhibited in MCs. We also explored the correlation between ER stress in the glomerulus and the clinical outcomes of IgAN patients in a prospective study. Patients with lower expression of p-eIF2α or ATF4 had higher rates of hematuria remission, proteinuria remission and clinical remission. In summary, our work outlines that in IgAN, ER stress mediated by eIF2α/ATF4 pathway promotes MC proliferation via up-regulating the expression of cyclin D1. Furthermore, p-eIF2α and ATF4 in the glomerulus negatively correlate with the clinical remission of IgAN patients.


Assuntos
Glomerulonefrite por IGA , Células Mesangiais , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Estresse do Retículo Endoplasmático , Glomerulonefrite por IGA/metabolismo , Células Mesangiais/metabolismo , Estudos Prospectivos , Transdução de Sinais
3.
Mol Med ; 29(1): 63, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161357

RESUMO

BACKGROUND: Renal interstitial fibrosis (RIF) is a common pathway to end-stage renal disease regardless of the initial etiology. Currently, the molecular mechanisms for RIF remains not fully elucidated. Nuclear receptor subfamily 4 group A member 1(Nr4a1), a member of the NR4A subfamily of nuclear receptors, is a ligand-activated transcription factor. The role of Nr4a1 in RIF remains largely unknown. METHODS: In this study, we determined the role and action mechanism of Nr4a1 in RIF. We used unilateral ureteral obstruction (UUO) mice and transforming growth factor (TGF)-ß1-treated human renal proximal tubular epithelial cells (HK-2 cells) as in vivo and in vitro models of RIF. A specific Nr4a1 agonist Cytosporone B (Csn-B) was applied to activate Nr4a1 both in vivo and in vitro, and Nr4a1 small interfering RNA was applied in vitro. Renal pathological changes were evaluated by hematoxylin and eosin and Masson staining, and the expression of fibrotic proteins including fibronectin (Fn) and collagen-I (Col-I), and phosphorylated p38 MAPK was measure by immunohistochemical staining and western blot analysis. RESULTS: The results showed that Nr4a1 was upregulated in UUO mouse kidneys, and was positively correlated with the degree of interstitial kidney injury and the levels of fibrotic proteins. Csn-B treatment aggravated UUO-induced renal interstitial fibrosis, and induced p38 MAPK phosphorylation. In vitro, TGF-ß induced Nr4a1 expression, and Nr4a1 downregulation prevented TGF-ß1-induced expression of Fn and Col-I and the activation of p38 MAPK. Csn-B induced fibrotic proteins expression and p38 MAPK phosphorylation, and moreover Csn-B induced fibrotic proteins expression was abrogated by treatment with p38 MAPK inhibitor SB203580. We provided further evidence that Csn-B treatment promoted cytoplasmic accumulation of Nr4a1. CONCLUSION: The findings in the present study indicate that Nr4a1 promotes renal fibrosis potentially through activating p38 MAPK kinase.


Assuntos
Nefropatias , Humanos , Animais , Camundongos , Fosforilação , Nefropatias/etiologia , Fenilacetatos , Rim , Colágeno Tipo I , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética
4.
Mol Med ; 29(1): 58, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095432

RESUMO

BACKGROUND: Septic acute kidney injury (S-AKI) is the leading form of acute kidney failure among hospitalized patients, and the inflammatory response is involved in this process. 4-octyl itaconate (4-OI) is a multi-target itaconate derivative with potent anti-inflammatory action. However, it remains elusive whether and how 4-OI contributes to the regulation of S-AKI. METHODS: We employed a lipopolysaccharide (LPS)-induced AKI murine model and explored the potential renoprotective effect of 4-OI in vivo. In vitro experiments, BUMPT cells, a murine renal tubular cell line, were conducted to examine the effects of 4-OI on inflammation, oxidative stress, and mitophagy. Moreover, STAT3 plasmid was transfected in BUMPT cells to investigate the role of STAT3 signaling in the 4-OI-administrated state. RESULTS: We demonstrate that 4-OI protects against S-AKI through suppressing inflammation and oxidative stress and enhancing mitophagy. 4-OI significantly reduced the levels of Scr, BUN, Ngal as well as the tubular injury in LPS-induced AKI mice. 4-OI restrained inflammation by reducing macrophage infiltration and suppressing the expression of IL-1ß and NLRP3 in the septic kidney. 4-OI also reduced ROS levels, as well as cleaved caspase-3 and boosted antioxidants such as HO-1, and NQO1 in mice. In addition, the 4-OI treatment significantly promoted mitophagy. Mechanistically, 4-OI activated Nrf2 signaling and suppressed phosphorylated STAT3 in vivo and vitro. Molecular docking revealed the binding affinity of 4-OI towards STAT3. ML385, a specific Nrf2 inhibitor, partially repressed the anti-inflammatory and anti-oxidative effects of 4-OI and partially restricted the mitophagy induced by 4-OI in vivo and in vitro. Transfected with STAT3 plasmid partially suppressed mitophagy and the anti-inflammatory effect provoked by 4-OI in vitro. CONCLUSION: These data suggest that 4-OI ameliorates LPS-induced AKI by suppressing inflammation and oxidative stress and enhancing mitophagy through the overactivation of the Nrf2 signaling pathway, and inactivation of STAT3. Our study identifies 4-OI as a promising pharmacologic for S-AKI.


Assuntos
Injúria Renal Aguda , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Injúria Renal Aguda/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico
5.
Cell Mol Life Sci ; 79(8): 452, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895146

RESUMO

BACKGROUND: Cisplatin is an effective chemotherapeutic drug, but it may induce both acute and chronic kidney problems. The pathogenesis of chronic kidney disease (CKD) associated with cisplatin chemotherapy remains largely unclear. METHODS: Mice and renal tubular cells were subjected to repeated low-dose cisplatin (RLDC) treatment to induce CKD and related pathological changes. The roles of endoplasmic reticulum (ER) stress, PERK, and protein kinase C-δ (PKCδ) were determined using pharmacological inhibitors and genetic manipulation. RESULTS: ER stress was induced by RLDC in kidney tubular cells in both in vivo and in vitro models. ER stress inhibitors given immediately after RLDC attenuated kidney dysfunction, tubular atrophy, kidney fibrosis, and inflammation in mice. In cultured renal proximal tubular cells, inhibitors of ER stress or its signaling kinase PERK also suppressed RLDC-induced fibrotic changes and the expression of inflammatory cytokines. Interestingly, RLDC-induced PKCδ activation, which was blocked by ER stress or PERK inhibitors, suggesting PKCδ may act downstream of PERK. Indeed, suppression of PKCδ with a kinase-dead PKCδ (PKCδ-KD) or Pkcδ-shRNA attenuated RLDC-induced fibrotic and inflammatory changes. Moreover, the expression of active PKCδ-catalytic fragment (PKCδ-CF) diminished the beneficial effects of PERK inhibitor in RLDC-treated cells. Co-immunoprecipitation assay further suggested PERK binding to PKCδ. CONCLUSION: These results indicate that ER stress contributes to chronic kidney pathologies following cisplatin chemotherapy via the PERK-PKCδ pathway.


Assuntos
Estresse do Retículo Endoplasmático , Insuficiência Renal Crônica , Animais , Apoptose , Cisplatino/farmacologia , Camundongos , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Transdução de Sinais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
6.
Mol Med ; 28(1): 117, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138342

RESUMO

BACKGROUND: Lipid accumulation in tubular cells plays a key role in diabetic kidney disease (DKD). Targeting lipid metabolism disorders has clinical value in delaying the progression of DKD, but the precise mechanism by which molecules mediate lipid-related kidney injury remains unclear. Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional sorting protein that plays a role in lipid metabolism. This study determined the role of PACS-2 in lipid-related kidney injury in DKD. METHODS: Diabetes was induced by a high-fat diet combined with intraperitoneal injections of streptozotocin (HFD/STZ) in proximal tubule-specific knockout of Pacs-2 mice (PT-Pacs-2-/- mice) and the control mice (Pacs-2fl/fl mice). Transcriptomic analysis was performed between Pacs-2fl/fl mice and PT-Pacs-2-/- mice. RESULTS: Diabetic PT-Pacs-2-/- mice developed more severe tubule injury and proteinuria compared to diabetic Pacs-2fl/fl mice, which accompanied with increasing lipid synthesis, uptake and decreasing cholesterol efflux as well as lipid accumulation in tubules of the kidney. Furthermore, transcriptome analysis showed that the mRNA level of sterol O-acyltransferase 1 (Soat1) was up-regulated in the kidney of control PT-Pacs-2-/- mice. Transfection of HK2 cells with PACS-2 siRNA under high glucose plus palmitic acid (HGPA) condition aggravated lipid deposition and increased the expression of SOAT1 and sterol regulatory element-binding proteins (SREBPs), while the effect was blocked partially in that of co-transfection of SOAT1 siRNA. CONCLUSIONS: PACS-2 has a protective role against lipid-related kidney injury in DKD through SOAT1/SREBPs signaling.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hipercolesterolemia , Animais , Colesterol/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/etiologia , Glucose/metabolismo , Hipercolesterolemia/metabolismo , Rim/metabolismo , Camundongos , Ácido Palmítico , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Esteróis/metabolismo , Estreptozocina/metabolismo
7.
Clin Sci (Lond) ; 136(24): 1877-1891, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36449316

RESUMO

Sepsis is a leading cause of acute kidney injury (AKI), and the pathogenesis of septic AKI remains largely unclear. Parkinson disease protein 7 (PARK7) is a protein of multiple functions that was recently implicated in septic AKI, but the underlying mechanism is unknown. In the present study, we determined the role of PARK7 in septic AKI and further explored the underlying mechanism in lipopolysaccharide (LPS)-induced endotoxic models. PARK7 was induced both in vivo and in vitro following LPS treatment. Compared with wild-type (WT) mice, Park7-deficient mice experienced aggravated kidney tissue damage and dysfunction, and enhanced tubular apoptosis and inflammation following LPS treatment. Consistently, LPS-induced apoptosis and inflammation in renal tubular cells in vitro were exacerbated by Park7 knockdown, whereas they were alleviated by PARK7 overexpression. Mechanistically, silencing Park7 facilitated nuclear translocation and phosphorylation of p65 (a key component of the nuclear factor kappa B [NF-κB] complex) during LPS treatment, whereas PARK7 overexpression partially prevented these changes. Moreover, we detected PARK7 interaction with p65 in the cytoplasm in renal tubular cells, which was enhanced by LPS treatment. Collectively, these findings suggest that PARK7 is induced to protect against septic AKI through suppressing NF-κB signaling.


Assuntos
Injúria Renal Aguda , Doença de Parkinson , Sepse , Camundongos , Animais , NF-kappa B/metabolismo , Endotoxinas/efeitos adversos , Lipopolissacarídeos/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Inflamação/patologia , Sepse/metabolismo , Proteína Desglicase DJ-1
8.
Nephrol Dial Transplant ; 37(12): 2366-2385, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-35488871

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a public health problem with no specific therapies in the clinic and the underlying pathogenesis of AKI remains obscure. Bombesin receptor-activated protein (BRAP, C6ORF89 protein) was initially discovered as a ligand for a previously orphan G-protein-coupled receptor bombesin-like receptor-3. At present, accepted biological effects of BRAP include cell cycle progression, wound repair and the activation of histone deacetylases. However, its role in kidney disease is unknown. In this study we have investigated the role of BRAP and underlying mechanisms involved in cisplatin (CP)-induced AKI. METHODS: Here we used Bc004004 (homologous of C6ORF89 in mice) knockout mice and HK2 cells to investigate the effect of BRAP on AKI in vitro and in vivo. We analyzed ChIP-Seq and RNA-Seq data to search for the upstream regulators of BRAP and downstream mediators of BRAP action in AKI. Immunostaining, real-time polymerase chain reaction (PCR), co-immunoprecipitation, a dual-luciferase reporter assay and ChIP-PCR assay were applied to reveal the upstream and downstream regulation mechanism of BRAP during cisplatin-induced AKI. RESULTS: BRAP was downregulated in mice and human kidneys with AKI. Global Bc004004 deletion alleviated tubular cell apoptosis and necroptosis in CP-induced AKI mice, whereas local overexpression of BRAP in kidneys aggravated them. Pan-caspase inhibitor Z-VAD pretreatment attenuated CP-induced blood creatinine increase and kidney injury in wild-type mice but not in BRAP -/- mice. The activation of mixed lineage kinase like-domain was magnified by Z-VAD in CP-treated mice, especially in BRAP -/- mice. The cytoprotective effect of Z-VAD was more substantial than necrostatin-1 (Nec-1, an inhibitor of necroptosis) in CP-treated human kidney proximal tubular epithelial (HK2) cells. Furthermore, Nec-1 pretreatment reduced the CP-induced cell death in BRAP overexpression HK2 cells but did not work in cells with normal BRAP levels. We determined that CP treatment activated the nuclear factor-κB subunit P65 and inhibition of P65 increased the messenger RNA (mRNA) levels of BRAP in HK2 cells. The chromatin immunoprecipitation assay and dual-luciferase reporter gene assay verified P65 binding to the C6ORF89 promoter and reduced its mRNA expression upon CP treatment. Next we found that sirtuin 2 (SIRT2) was downregulated in CP-induced AKI and BRAP levels directly impacted the protein levels of SIRT2. Our findings further confirmed that BRAP regulates the SIRT2 protein levels by affecting SIRT2's interactions with E3 ubiquitin ligase HRD1 and subsequent proteasomal degradation. CONCLUSIONS: Our results demonstrated that BRAP played an important role in tubular cell apoptosis and necroptosis during CP-induced AKI. Safe and efficient BRAP inhibitors might be effective therapeutic options for AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Humanos , Camundongos , Injúria Renal Aguda/patologia , Apoptose , Bombesina/efeitos adversos , Cisplatino/toxicidade , Camundongos Endogâmicos C57BL , Receptores da Bombesina , RNA Mensageiro , Sirtuína 2
9.
Toxicol Appl Pharmacol ; 418: 115492, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722665

RESUMO

Cisplatin is a commonly used anti-cancer drug, but it induces nephrotoxicity. As a water-soluble vitamin B family member, nicotinamide (NAM) was recently demonstrated to have beneficial effects for renal injury, but its underlying mechanism remains largely unclear. Here, we suggest that NAM may exert protective effects against cisplatin-induced acute kidney injury (AKI) mainly via suppressing the poly ADP-ribose polymerase 1 (PARP1)/p53 pathway. In our experiment, NAM protected against cisplatin-induced apoptosis both in cultured renal proximal tubular cells and AKI in mice. Mechanistically, NAM suppressed the expression and activation of p53, a known mediator of cisplatin-induced AKI. Upstream of p53, NAM attenuated the induction of γ-H2AX, a hallmark of DNA damage response. Interestingly, PARP1 was activated in cisplatin AKI and this activation was inhibited by NAM. Pharmacological inhibition of PARP1 with PJ34 significantly ameliorated p53 activation and cisplatin-induced cell death in RPTCs and AKI in mice. Thus, NAM may protect against cisplatin-induced AKI by suppressing the PARP1/p53 pathway.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino , Túbulos Renais Proximais/efeitos dos fármacos , Niacinamida/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Histonas/metabolismo , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ratos , Transdução de Sinais
10.
Clin Sci (Lond) ; 135(10): 1273-1288, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33997886

RESUMO

Cisplatin (Cis) can cause chronic kidney disease (CKD) and promote renal fibrosis, but the underlying mechanism is not fully understood. Hypoxia inducible factor-1α (HIF-1α) can promote renal fibrosis in some kidney diseases, but its role in Cis-induced CKD is still unknown. Notch-1 is a recognized molecule that promotes renal fibrosis under pathological circumstances, and evidence shows that HIF-1α and Notch-1 are closely related to each other. In the present study, mice with HIF-1α gene knockout in proximal tubular cells (PTCs) (PT-HIF-1α-KO) were generated and treated with Cis to induce CKD. A human proximal tubular cell line (HK-2) and primary mouse PTCs were used for in vitro studies. The results showed that HIF-1α was increased in the kidneys of Cis-treated wild-type mice, accompanied by elevated Notch-1, Notch-1 intracellular domain (N1ICD), Hes-1 and renal fibrosis. However, these alterations were partially reversed in PT-HIF-1α-KO mice. Similar results were observed in HK-2 cells and primary mouse PTCs. In addition, treating the cells with Cis induced a marked interaction of HIF-1α and N1ICD. Further inhibiting Notch-1 significantly reduced cellular fibrogenesis but did not affect HIF-1α expression. The data suggested that HIF-1α could promote renal fibrosis in Cis-induced CKD by activating Notch-1 both transcriptionally and post-transcriptionally and that HIF-1α may serve as a potential therapeutic target for Cis-induced CKD.


Assuntos
Fibrose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Animais , Células Epiteliais/metabolismo , Fibrose/etiologia , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Rim/metabolismo , Túbulos Renais Proximais/patologia
11.
FASEB J ; 34(9): 12599-12614, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32706145

RESUMO

Renal tubulointerstitial fibrosis (TIF) is a common pathological feature of aristolochic acid (AA) nephropathy (AAN). G2/M arrest of proximal tubular cells (PTCs) is implicated in renal fibrosis of AAN, but the upstream regulatory molecule remains unknown. Hypoxia inducible factor-1α (HIF-1α) promotes renal fibrosis in kidney disease, but the role of HIF-1α in AAN is unclear. Evidence shows that HIF-1α and p21, a known inducer of cellular G2/M arrest, are closely related to each other. To investigate the role of HIF-1α in renal fibrosis of AAN and its effects on p21 expression and PTCs G2/M arrest, mice with HIF-1α gene knockout PTCs (PT-HIF-1α-KO) were generated, and AAN was induced by AA. In vitro tests were conducted on the human PTCs line HK-2 and primary mouse PTCs. HIF-1α and p21 expression, fibrogenesis, and G2/M arrest of PTCs were determined. Results showed that HIF-1α was upregulated in the kidneys of wild-type (WT) AAN mice, accompanied by p21 upregulation, PTCs G2/M arrest and renal fibrosis, and these alterations were reversed in PT-HIF-1α-KO AAN mice. Similar results were observed in HK-2 cells and were further confirmed in primary PTCs from PT-HIF-1α-KO and WT mice. Inhibiting p21 in HK-2 cells and primary PTCs did not change the expression of HIF-1α, but G2/M arrest and fibrogenesis were reduced. These data indicate that HIF-1α plays a key role in renal fibrosis in AAN by inducing PTCs G2/M arrest modulated through p21. HIF-1α may serve as a potential therapeutic target for AAN.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Túbulos Renais Proximais , Nefrite Intersticial/metabolismo , Animais , Ácidos Aristolóquicos , Linhagem Celular , Fibrose/induzido quimicamente , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Camundongos , Camundongos Knockout
12.
Kidney Int ; 97(1): 106-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31787254

RESUMO

Fibrosis is a common pathologic pathway of progressive kidney disease involving complex signaling networks. The deacetylase sirtuin 6 (sirt6) was recently implicated in kidney injury. However, it remains elusive whether and how sirt6 contributes to the regulation of kidney fibrosis. Here, we demonstrate that sirt6 protects against kidney interstitial fibrosis through epigenetic regulation of ß-catenin signaling. Sirt6 is markedly upregulated during fibrogenesis following obstructed nephropathy and kidney ischemia-reperfusion injury. Pharmacological inhibition of sirt6 deacetylase activity aggravates kidney fibrosis in obstructed nephropathy. Consistently, knockdown of sirt6 in mouse kidney proximal tubular epithelial cells aggravates transforming growth factor-ß-induced fibrosis in vitro. Mechanistically, sirt6 deficiency results in augmented expression of the downstream target proteins of ß-catenin signaling. We further show that sirt6 interacts with ß-catenin during transforming growth factor-ß treatment and binds to the promoters of ß-catenin target genes, resulting in the deacetylation of histone H3K56 to prevent the transcription of fibrosis-related genes. Thus, our data reveal the anti-fibrotic function of sirt6 by epigenetically attenuating ß-catenin target gene expression.


Assuntos
Epigênese Genética , Túbulos Renais/patologia , Sirtuínas/metabolismo , beta Catenina/metabolismo , Acetilação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Células Epiteliais , Fibrose , Técnicas de Silenciamento de Genes , Inibidores de Histona Desacetilases/farmacologia , Histonas/genética , Humanos , Túbulos Renais/citologia , Masculino , Camundongos , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Traumatismo por Reperfusão/patologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
13.
Am J Physiol Cell Physiol ; 317(2): C177-C188, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969781

RESUMO

Acute kidney injury (AKI) is a major kidney disease featured by a rapid decline of renal function. Pathologically, AKI is characterized by tubular epithelial cell injury and death. Besides its acute consequence, AKI contributes critically to the development and progression of chronic kidney disease (CKD). After AKI, surviving tubular cells regenerate to repair. Normal repair restores tubular integrity, while maladaptive or incomplete repair results in renal fibrosis and eventually CKD. Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), and tRNAs. Accumulating evidence suggests that ncRNAs play important roles in kidney injury and repair. In this review, we summarize the recent advances in the understanding of the roles of ncRNAs, especially miRNAs and lncRNAs in kidney injury and repair, discuss the potential application of ncRNAs as biomarkers of AKI as well as therapeutic targets for treating AKI and impeding AKI-CKD transition, and highlight the future research directions of ncRNAs in kidney injury and repair.


Assuntos
Injúria Renal Aguda/metabolismo , Rim/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Regeneração , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Proliferação de Células , Progressão da Doença , Fibrose , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Rim/patologia , Rim/fisiopatologia , MicroRNAs/genética , MicroRNAs/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/uso terapêutico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Transdução de Sinais
14.
J Cell Mol Med ; 23(6): 3995-4004, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30993884

RESUMO

Renal interstitial fibrosis is a common pathological feature in progressive kidney diseases currently lacking effective treatment. Nicotinamide (NAM), a member of water-soluble vitamin B family, was recently suggested to have a therapeutic potential for acute kidney injury (AKI) in mice and humans. The effect of NAM on chronic kidney pathologies, including renal fibrosis, is unknown. Here we have tested the effects of NAM on renal interstitial fibrosis using in vivo and in vitro models. In vivo, unilateral urethral obstruction (UUO) induced renal interstitial fibrosis as indicated Masson trichrome staining and expression of pro-fibrotic proteins, which was inhibited by NAM. In UUO, NAM suppressed tubular atrophy and apoptosis. In addition, NAM suppressed UUO-associated T cell and macrophage infiltration and induction of pro-inflammatory cytokines, such as TNF-α and IL-1ß. In cultured mouse proximal tubule cells, NAM blocked TGF-ß-induced expression of fibrotic proteins, while it marginally suppressed the morphological changes induced by TGF-ß. NAM also suppressed the expression of pro-inflammatory cytokines (eg MCP-1 and IL-1ß) during TGF-ß treatment of these cells. Collectively, the results demonstrate an anti-fibrotic effect of NAM in kidneys, which may involve the suppression of tubular injury and inflammation.


Assuntos
Nefropatias/tratamento farmacológico , Túbulos Renais Proximais/efeitos dos fármacos , Rim/patologia , Niacinamida/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Fibrose , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/administração & dosagem , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
15.
J Cell Biochem ; 120(10): 17354-17367, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31104327

RESUMO

BACKGROUND: As a common phenotype in chronic kidney disease, renal interstitial fibrosis has been largely studied. Norcantharidin (NCTD), a derivative of naturally occurring cantharidin, has an anti-renal fibrotic effect. However, its underlying mechanisms of the protective role remain largely unknown. Long noncoding RNAs (lncRNAs) play vital parts in tissue homeostasis modulation under pathophysiological conditions. In this study, we discovered the underlying lncRNAs and genes, which may contribute to the anti-renal fibrotic effects of NCTD. METHODS: RNA-seq analysis was performed to evaluate profiling of lncRNAs and messenger RNAs (mRNAs) in kidney tissues of sham-control, and unilateral ureteral obstruction (UUO) mouse models with or without NCTD treatment. Systematic bioinformatic analysis of expression levels was used in lncRNAs and mRNAs of NCTD-treated UUO kidneys. Altered expression of lncRNAs and mRNAs levels was confirmed by quantitative real-time polymerase chain reaction analysis. RESULTS: 467 lncRNAs and 1502 mRNAs were differentially expressed between UUO- and sham-operated kidneys, and notably, these alterations in UUO-operated kidney were partially reversed following NCTD treatment. Interestingly, the up-regulation of lncRNA Gm16076, Gm26669, and down-regulation of Fam120aos were highly correlated with the up-regulation of mRNA levels of fibrosis-related gene ITGB1, STAT3 and reduction of Pink1 in UUO kidney, respectively. CONCLUSIONS: The result suggested lncRNAs-regulated genes may contribute to the anti-renal fibrotic effect under NCTD treatment, and thus targeting lncRNAs-controlled genes and their related molecular signaling pathways may serve as a promising therapeutic target in renal fibrosis treatment.


Assuntos
Biomarcadores/análise , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Fibrose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA-Seq/métodos , Obstrução Ureteral/complicações , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Fibrose/tratamento farmacológico , Fibrose/etiologia , Fibrose/patologia , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL
16.
Am J Physiol Renal Physiol ; 317(6): F1582-F1592, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532246

RESUMO

Cisplatin is a commonly used chemotherapeutic drug for cancer treatment, but its nephrotoxicity may lead to the deterioration of renal function. Previous work has been focused on cisplatin-induced acute kidney disease, whereas the mechanism of chronic kidney disease after cisplatin chemotherapy is largely unknown. In the present study, we have characterized the mouse model of chronic kidney defects induced by repeated low-dose cisplatin treatment. We have also established a relevant cell culture model. In the animal model, C57 mice were given weekly injection of 8 mg/kg cisplatin for 4 wk. This led to a sustained decline of kidney function. These mice showed loss of kidney mass, interstitial fibrosis, continued activation of inflammatory cytokines, and appearance of atubular glomeruli. In the cell model, the BUMPT mouse proximal tubular cell line was treated four times with 1-2 µM cisplatin, resulting in low levels of apoptosis and the expression of fibrosis proteins and profibrotic factors. These data suggest that repeated treatment with low-dose cisplatin causes long-term renal pathologies with characteristics of chronic kidney disease.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Túbulos Renais/efeitos dos fármacos , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Citocinas , Fibrose , Taxa de Filtração Glomerular , Rim/patologia , Testes de Função Renal , Glomérulos Renais/patologia , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Insuficiência Renal Crônica/patologia
17.
Kidney Int ; 95(4): 880-895, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30791996

RESUMO

Ectopic fat deposition (EFD) in the kidney has been shown to play a causal role in diabetic nephropathy; however, the mechanism underlying EFD remains elusive. By transcriptome analysis, we found decreased expression levels of disulfide-bond A oxidoreductase-like protein (DsbA-L) in the kidneys of diabetic mice (induced by high-fat diet plus Streptozotocin) compared with control mice. Increased expression of adipocyte differentiation-related protein and abnormal levels of collagen I, fibronectin, and phosphorylated 5'AMP-activated kinase (p-AMPK), adipose triglyceride lipase (p-ATGL), and HMG-CoA reductase (p-HMGCR) were also observed in diabetic mice. These alterations were accompanied by deposition of lipid droplets in the kidney, and were more pronounced in diabetic DsbA-L knockout mice. In vitro, overexpression of DsbA-L ameliorated high glucose-induced intracellular lipid droplet deposition in a human proximal tubular cell line, and DsbA-L siRNA aggravated lipid droplet deposition and reduced the levels of p-AMPK, p-ATGL, and p-HMGCR. High glucose and palmitic acid treatment enhanced the expression of interleukin-1ß and interleukin-18; these enhancements were further increased after treatment with DsbA-L siRNA but alleviated by co-treatment with an AMPK activator. In kidney biopsy tissue from patients with diabetic nephropathy, DsbA-L expression was negatively correlated with EFD and tubular damage. Collectively, these results suggest that DsbA-L has a protective role against EFD and lipid-related kidney damage in diabetic nephropathy. Activation of the AMPK pathway is a potential mechanism underlying DsbA-L action in the kidney.


Assuntos
Nefropatias Diabéticas/patologia , Glutationa Transferase/metabolismo , Rim/patologia , Metabolismo dos Lipídeos , Adenilato Quinase/metabolismo , Adulto , Animais , Biópsia , Linhagem Celular , Colesterol/biossíntese , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Glutationa Transferase/genética , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Rim/citologia , Gotículas Lipídicas/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Estreptozocina/toxicidade
18.
FASEB J ; 32(6): 3423-3433, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401620

RESUMO

Cisplatin, a widely used cancer therapy drug, induces nephrotoxicity or acute kidney injury (AKI), but the underlying mechanism remains unclear, and renal protective approaches are not available. Fibroblast growth factor (FGF)21 is an endocrine factor that regulates glucose uptake, metabolism, and energy expenditure. However, recent work has also implicated FGF21 in cellular stress response under pathogenic conditions. The role and regulation of FGF21 in AKI are unclear. Here, we show that FGF21 was dramatically induced during cisplatin treatment of renal tubular cells in vitro and mouse kidneys in vivo. The inductive response was suppressed by pifithrin (a pharmacological inhibitor of P53), suggesting a role of P53 in FGF21 induction. In cultured renal tubular cells, knockdown of FGF21 aggravated cisplatin-induced apoptosis, whereas supplementation of recombinant FGF21 was protective. Consistently, recombinant FGF21 alleviated cisplatin-induced kidney dysfunction, tissue damage, and tubular apoptosis in mice. Mechanistically, FGF21 suppressed P53 induction and activation during cisplatin treatment. Together, these results indicate that FGF21 is induced during cisplatin nephrotoxicity to protect renal tubules, and recombinant FGF21 may have therapeutic potential.-Li, F., Liu, Z., Tang, C., Cai, J., Dong, Z. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury.


Assuntos
Injúria Renal Aguda/metabolismo , Apoptose/efeitos dos fármacos , Cisplatino/efeitos adversos , Fatores de Crescimento de Fibroblastos/biossíntese , Túbulos Renais/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Cisplatino/farmacologia , Túbulos Renais/patologia , Masculino , Camundongos , Proteína Supressora de Tumor p53/metabolismo
19.
Am J Physiol Renal Physiol ; 315(4): F1098-F1106, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949392

RESUMO

Acute kidney injury (AKI) is a contributing factor in the development and progression of chronic kidney disease (CKD). Despite rapid progresses, the mechanism underlying AKI-CKD transition remains largely unclear. Animal models recapitulating this process are crucial to the research of the pathophysiology of AKI-CKD transition and the development of effective therapeutics. In this review, we present the commonly used rodent models of AKI-CKD transition, including bilateral ischemia-reperfusion injury (IRI), unilateral IRI, unilateral IRI with contralateral nephrectomy, multiple episodes of IRI, and repeated treatment of low-dose cisplatin, diphtheria toxin, aristolochic acid, or folic acid. The main merits and pitfalls of these models are also discussed. This review provides helpful information for establishing reliable and clinically relevant models for studying post-AKI development of chronic renal pathologies and the progression to CKD.


Assuntos
Injúria Renal Aguda/patologia , Rim/patologia , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Roedores
20.
Cell Physiol Biochem ; 46(3): 975-985, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29680838

RESUMO

BACKGROUND/AIMS: Contrast induced-acute kidney injury (CI-AKI) is one of the most common causes of acute kidney injury (AKI) in hospitalized patients. Mitophagy, the selective elimination of mitochondria via autophagy, is an important mechanism of mitochondrial quality control in physiological and pathological conditions. In this study, we aimed to determine effects of iohexol and iodixanol on mitochondrial reactive oxygen species (ROS), mitophagy and the potential role of mitophagy in CI-AKI cell models. METHODS: Cell viability was measured by cell counting kit-8. Cell apoptosis, mitochondrial ROS and mitochondrial membrane potential were detected by western blot, MitoSOX fluorescence and TMRE staining respectively. Mitophagy was detected by the colocalization of LC3-FITC with MitoTracker Red, western blot and electronic microscope. RESULTS: The results showed that mitophagy was induced in human renal tubular cells (HK-2 cells) under different concentrations of iodinated contrast media. Mitochondrial ROS displayed increased expression after the treatment. Rapamycin (Rap) enhanced mitophagy and alleviated contrast media induced HK-2 cells injury. In contrast, autophagy inhibitor 3-methyladenine (3-MA) down-regulated mitophagy and aggravated cells injury. CONCLUSIONS: Together, our finding indicates that iohexol and iodixanol contribute to the generation of mitochondrial ROS and mitophagy. The enhancement of mitophagy can effectively protect the kidney from iodinated contrast (iohexol)-induced renal tubular epithelial cells injury.


Assuntos
Meios de Contraste/toxicidade , Mitofagia/efeitos dos fármacos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Adenina/análogos & derivados , Adenina/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Meios de Contraste/química , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Iodo/química , Iohexol/toxicidade , Túbulos Renais/citologia , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirolimo/farmacologia , Ácidos Tri-Iodobenzoicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA