RESUMO
This paper reports the efficient synthesis of substituted (Z)-N-allyl sulfonamides via a palladium-catalyzed three-component tandem reaction of N-buta-2,3-dienyl sulfonamides with iodides and sulfonyl hydrazide or sulfinic acid sodium salt as nucleophiles. Pd(PPh3)4 (2.5 mol %), K2CO3, and THF were used as the optimal catalyst, base, and solvent, respectively. The substituted (Z)-N-allyl sulfonamides were obtained in a 30-83% overall yield. Mechanistic investigations revealed that the formation of the single (Z)-isomer was controlled by the formation of a six-membered palladacycle intermediate.
RESUMO
Based on 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474), three series of novel 1,3,5-triazine or pyrimidine derivatives containing semicarbazones have been designed and synthesized to obtain new potent and selective PI3Kα inhibitors. Their inhibitory activities in vitro were evaluated against PI3Kα and three tumor-derived cell lines (U87-MG, MCF-7, and PC-3). We also tested promising compounds (A4, A6, A10, and B1) for other PI3K class I subtype (PI3Kß, PI3Kδ, and PI3Kγ) activity. The representative compound A10 exhibited an IC50 value of 0.32 nM against PI3Kα, and demonstrated extraordinary subtype selectivity. Furthermore, compound A10 obviously inhibited proliferation of MCF-7 cell lines, induced a great decrease in mitochondrial membrane potential leading to apoptosis of cancer cells, and arrested G2 phase in a dose-dependent manner. Additionally, compound A10 induced significant tumor regressions in a xenograft mouse model of U87-MG cell line without an obvious sign of toxicity upon 20 mg/kg oral administration. Compound A10 may serve as a PI3Kα-selective inhibitor and provide the opportunity to spare patients the side effects associated with broader inhibition of the class I PI3K family.
Assuntos
Antineoplásicos , Humanos , Camundongos , Animais , Inibidores de Fosfoinositídeo-3 Quinase , Relação Estrutura-Atividade , Proliferação de Células , Antineoplásicos/farmacologia , Triazinas/farmacologia , Linhagem Celular Tumoral , Benzimidazóis/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
Recent studies have shown that phosphoinositide 3-kinase (PI3K) plays a vital role in cell division, and it has become a therapeutic target for many cancers. In this paper, some new 1,3,5-triazine or pyrimidine skeleton derivatives containing dithiocarbamate were designed and synthesized based on the reasonable drug design strategy from the previously effective compound 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK-474), in order to get effective selective PI3Kα inhibitors that have not been reported in the literature. In addition, the inhibitory activities of these compounds on PI3Kα and two tumor cell lines in vitro (HCT-116, U87-MG) were evaluated. The representative compound 13 showed a half-maximal inhibitory concentration (IC50) value of 1.2 nM for PI3Kα and an exciting kinase selectivity. Compound 13 displayed strong efficacy in HCT-116 and U87-MG cell lines with IC50 values of 0.83 and 1.25 µM, respectively. In addition, compound 13 induced obvious tumor regression in the U87-MG cell line xenografts mouse model, with no obvious signs of toxicity after intraperitoneal injection at a dose of 40 mg/kg. Compound 13 can be an effective selective inhibitor of PI3Kα, and it provides patients with an opportunity to avoid the side effects related to the wider inhibition of the class I PI3K family.