Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 18(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456085

RESUMO

A new pentaketide derivative, penilactonol A (1), and two new hydroxyphenylacetic acid derivatives, (2'R)-stachyline B (2) and (2'R)-westerdijkin A (3), together with five known metabolites, bisabolane-type sesquiterpenoids 4-6 and meroterpenoids 7 and 8, were isolated from the solid culture of a marine alga-associated fungus Penicillium chrysogenum LD-201810. Their structures were elucidated based on extensive spectroscopic analyses, including 1D/2D NMR and high resolution electrospray ionization mass spectra (HRESIMS). The absolute configurations of the stereogenic carbons in 1 were determined by the (Mo2(OAc)4)-induced circular dichroism (CD) and comparison of the calculated and experimental electronic circular dichroism (ECD) spectra, while the absolute configuration of the stereogenic carbon in 2 was established using single-crystal X-ray diffraction analysis. Compounds 2 and 3 adapt the 2'R-configuration as compared to known hydroxyphenylacetic acid-derived and O-prenylated natural products. The cytotoxicity of 1-8 against human carcinoma cell lines (A549, BT-549, HeLa, HepG2, MCF-7, and THP-1) was evaluated. Compound 3 exhibited cytotoxicity to the HepG2 cell line with an IC50 value of 22.0 µM. Furthermore, 5 showed considerable activities against A549 and THP-1 cell lines with IC50 values of 21.2 and 18.2 µM, respectively.


Assuntos
Antineoplásicos/farmacologia , Eutrofização , Células Hep G2/efeitos dos fármacos , Penicillium chrysogenum , Animais , Antineoplásicos/química , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade
2.
J Vet Med Sci ; 82(8): 1187-1196, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669484

RESUMO

Research on the composition and application of immune enhancers in livestock and poultry breeding has been gaining interest in recent years. Poplar bark lipids (PBLs), which are extracted from poplar tree bark, are natural substances known to efficiently enhance the immune response. To understand the chemical makeup of PBLs and their underlying mechanism for enhancing the immune system, we extracted PBLs from poplar bark using petroleum ether and subjected these extracts to chemical analysis. To evaluate PBLs effect on the immune system mice were treated with different doses of PBL via gavage and sacrificed 4 weeks later. PBLs were shown to be rich in vitamin E, unsaturated fatty acids, and other immune-potentiating compounds. Treatment with PBLs increased the spleen index and stimulated spleen and thymus development. In addition, PBLs increased the number of CD3+CD4+ cells in the peripheral blood and the ratio of CD4+/CD8+ cells while decreasing the number of CD3+CD8+ cells. Moreover, PBLs significantly increased IL-4 and IFN-γ levels in mouse serum and TLR4 mRNA and protein expression in the spleen. Taken together these results demonstrate that PBLs exert their immune-potentiating effects by promoting spleen and thymus development, T lymphocyte proliferation and differentiation, and immune factor expression. These immune-potentiating effects may be related to the activation of TLR4. This study provides a theoretical basis for the development of PBLs as an immune adjuvant or feed additive in the future.


Assuntos
Extratos Vegetais/farmacologia , Populus/química , Linfócitos T/efeitos dos fármacos , Administração Oral , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Fatores Imunológicos/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos BALB C , Casca de Planta/química , Extratos Vegetais/administração & dosagem , Baço/efeitos dos fármacos , Baço/imunologia , Timo/efeitos dos fármacos , Timo/imunologia
3.
J Vet Sci ; 21(3): e46, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32476320

RESUMO

BACKGROUND: High concentrations of particulate matter less than 2.5 µm in diameter (PM2.5) in poultry houses is an important cause of respiratory disease in animals and humans. Pseudomonas aeruginosa is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. When excessively high concentrations of PM2.5 in poultry houses damage the respiratory system and impair host immunity, secondary infections with P. aeruginosa can occur and produce a more intense inflammatory response, resulting in more severe lung injury. OBJECTIVES: In this study, we focused on the synergistic induction of inflammatory injury in the respiratory system and the related molecular mechanisms induced by PM2.5 and P. aeruginosa in poultry houses. METHODS: High-throughput 16S rDNA sequence analysis was used for characterizing the bacterial diversity and relative abundance of the PM2.5 samples, and the effects of PM2.5 and P. aeruginosa stimulation on inflammation were detected by in vitro and in vivo. RESULTS: Sequencing results indicated that the PM2.5 in poultry houses contained a high abundance of potentially pathogenic genera, such as Pseudomonas (2.94%). The lung tissues of mice had more significant pathological damage when co-stimulated by PM2.5 and P. aeruginosa, and it can increase the expression levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α through nuclear factor (NF)-κB pathway in vivo and in vitro. CONCLUSIONS: The results confirmed that poultry house PM2.5 in combination with P. aeruginosa could aggravate the inflammatory response and cause more severe respiratory system injuries through a process closely related to the activation of the NF-κB pathway.


Assuntos
Material Particulado/efeitos adversos , Pneumonia/etiologia , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/fisiologia , Animais , Peso Corporal , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Subunidade p50 de NF-kappa B/metabolismo , Material Particulado/classificação , Pneumonia/induzido quimicamente , Pneumonia/microbiologia , Organismos Livres de Patógenos Específicos , Fator de Necrose Tumoral alfa/metabolismo
4.
Plant Pathol J ; 35(4): 351-361, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31481858

RESUMO

In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant G05ΔphzΔprn::lacZ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant G05Δvfr and G05ΔphzΔprn::lacZΔvfr. By quantifying ß-galactosidase activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant G05Δvfr, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.

5.
Front Microbiol ; 9: 2113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271388

RESUMO

To better understand the effect of different disinfectants on the types and quantities of microorganisms in a broiler chicken house, five different types of disinfectants, including ozone, available chlorine, quaternary ammonium salt, glutaraldehyde, and mixed disinfectant, were used. The broiler house microbial communities were analyzed by high-throughput sequencing combined with air sampling. The results showed that the concentrations of airborne aerobic bacteria in the empty broiler houses after application of different disinfectants were significantly reduced compared to a house untreated with disinfectant (P < 0.05 or P < 0.01), and the number of inhalable particles of airborne aerobic bacteria sharply decreased after disinfection. Of the five disinfectants, the mixed disinfectant had the best disinfection efficacy on the total microbial communities (P < 0.05). A total of 508,143 high-quality sequences were obtained by high-throughput sequencing, which identified 1995 operational taxonomic units. In total, 42 phyla and 312 genera were identified. The structures of airborne microbial communities in the broiler houses after the different disinfectants were applied differed. In the house treated with the mixed disinfectant, the microbial communities containing opportunistic pathogens, such as Escherichia-Shigella, Bacillus, and Pseudomonas, had the lowest abundance, with a significant decrease compared to the house untreated with disinfectant. The alpha diversity index showed low diversity of the microbial communities in the house treated with mixed disinfectant. In contrast to the other four disinfectants, only a small amount of bacteria was detected in the air sample in the house treated with the mixed disinfectant; specifically, only four phyla were found (Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes). The mixed disinfectant produced a positive effect on disinfection for four phyla; however, it didn't thoroughly eliminate them. At genus level, Bacillus, Arenimonas, and Shinella could not be detected in the house treated with the mixed disinfectant, but were detected in houses treated with other disinfectants. The high-throughput sequencing results revealed that the combination of multiple disinfectants exhibited a good disinfection efficacy and that this technique could disinfect the air of broiler houses. These results will help guide the development of a reasonable program for broiler house disinfection.

6.
J Food Prot ; 81(9): 1557-1564, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30138054

RESUMO

The aim of the present study was to analyze the aerosol concentrations and microbial community structures in closed cage broiler houses at different broiler growth stages to assess the dynamic pattern of microbial aerosols in closed cage systems. Our results revealed that the total concentration of bacterial aerosols gradually increased during the growth cycle of broilers. High-throughput sequencing of 16S rDNA revealed that microbial compositions differed tremendously during different growth stages, although Firmicutes and Proteobacteria were the dominant taxa in samples from all broiler growth stages. At the genus level, dominant phylotypes displayed great variation during different growth stages. Escherichia and Shigella were the most dominant taxa throughout the growth cycle, increasing from 4.3 to 12.4% as the broilers grew. The alpha index revealed that the microbial diversity displayed significant differences between the different growth stages and that the bacterial community had the highest diversity when broilers were 22 days old. High-throughput sequencing analyses revealed that environmental microbes and opportunistic pathogens had relatively high abundances during the winter growth period. The data revealed the composition and aerodynamic diameters of microbial aerosols in closed cage broiler houses at different broiler growth stages in winter. The results also enabled us to elucidate the dynamic pattern of microbial aerosols in broiler houses in response to bacterial communities. Our results may provide a basis for developing technologies for air quality control in caged poultry houses.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Bactérias , Galinhas , Abrigo para Animais , Aerossóis , Criação de Animais Domésticos , Animais , Bactérias/isolamento & purificação , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA