RESUMO
Despite incorporation of organic groups into silica-based aerogels to enhance their mechanical flexibility, the wide temperature reliability of the modified silicone aerogel is inevitably degraded. Therefore, facile synthesis of soft silicone aerogels with wide-temperature stability remains challenging. Herein, novel silicone aerogels containing a high content of Si are reported by using polydimethylvinylsiloxane (PDMVS), a hydrosilylation adduct with water-repellent groups, as a "flexible chain segment" embedded within the aerogel network. The poly(2-dimethoxymethylsilyl)ethylmethylvinylsiloxane (PDEMSEMVS) aerogel is fabricated through a cost-effective ambient temperature/pressure drying process. The optimized aerogel exhibits exceptional performance, such as ultra-low density (50 mg cm-3), wide-temperature mechanical flexibility, and super-hydrophobicity, in comparison to the previous polysiloxane aerogels. A significant reduction in the density of these aerogels is achieved while maintaining a high crosslinking density by synthesizing gel networks with well-defined macromolecules through hydrolytic polycondensation crosslinking of PDEMSEMVS. Notably, the pore/nanoparticle size of aerogels can be fine-tuned by optimizing the gel solvent type. The as-prepared silicone aerogels demonstrate selective absorption, efficient oil-water separation, and excellent thermal insulation properties, showing promising applications in oil/water separation and thermal protection.
RESUMO
With the advantages of lightweight and low thermal conductivity properties, polymeric foams are widely employed as thermal insulation materials for energy-saving buildings but suffer from inherent flammability. Flame-retardant coatings hold great promise for improving the fire safety of these foams without deteriorating the mechanical-physical properties of the foam. In this work, four kinds of sulfur-based flame-retardant copolymers are synthesized via a facile radical copolymerization. The sulfur-containing monomers serve as flame-retardant agents including vinyl sulfonic acid sodium (SPS), ethylene sulfonic acid sodium (VS), and sodium p-styrene sulfonate (VSS). Additionally, 2-hydroxyethyl acrylate (HEA) and 4-hydroxybutyl acrylate are employed to enable a strong interface adhesion with polymeric foams through interfacial H-bonding. By using as-synthesized waterborne flame-retardant polymeric coating with a thickness of 600 µm, the coated polyurethane foam (PUF) can achieve a desired V-0 rating during the vertical burning test with a high limiting oxygen index (LOI) of >31.5 vol%. By comparing these sulfur-containing polymeric fire-retardant coatings, poly(VS-co-HEA) coated PUF demonstrates the best interface adhesion capability and flame-retardant performance, with the lowest peak heat release rate of 166 kW m-2 and the highest LOI of 36.4 vol%. This work provides new avenues for the design and performance optimization of advanced fire-retardant polymeric coatings.
Assuntos
Retardadores de Chama , Polímeros , Poliuretanos , Enxofre , Poliuretanos/química , Polímeros/química , Enxofre/química , Retardadores de Chama/análise , IncêndiosRESUMO
The feature of low-density and thermal insulation properties of polydimethylsiloxane (PDMS) foam is one of the important challenges of the silicone industry seeking to make these products more competitive compared to traditional polymer foams. Herein, we report a green, simple, and low-cost strategy for synthesizing ultra-low-density porous silicone composite materials via Si-H cross-linking and foaming chemistry, and the sialylation-modified hollow glass microspheres (m-HM) were used to promote the HM/PDMS compatibility. Typically, the presence of 7.5 wt% m-HM decreases the density of pure foam from 135 mg/cm-3 to 104 mg/cm-3 without affecting the foaming reaction between Si-H and Si-OH and produces a stable porous structure. The optimized m-HM-modified PDMS foam composites showed excellent mechanical flexibility (unchanged maximum stress values at a strain of 70% after 100 compressive cycles) and good thermal insulation (from 150.0 °C to 52.1 °C for the sample with ~20 mm thickness). Our results suggest that the use of hollow microparticles is an effective strategy for fabricating lightweight, mechanically flexible, and thermal insulation PDMS foam composite materials for many potential applications.
RESUMO
Intumescent fire-retardant coatings, which feature thinner layers and good decorative effects while significantly reducing heat transfer and air dispersion capabilities, are highly attractive for fire safety applications due to their effective prevention of material combustion and protection of materials. Particularly, the worldwide demand for improved environmental protection requirements has given rise to the production of waterborne intumescent fire-retardant polymer composite coatings, which are comparable to or provide more advantages than solvent-based intumescent fire-retardant polymer composite coatings in terms of low cost, reduced odor, and minimal environmental and health hazards. However, there is still a lack of a comprehensive and in-depth overview of waterborne intumescent fire-retardant polymer composite coatings. This review aims to systematically and comprehensively discuss the composition, the flame retardant and heat insulation mechanisms, and the practical applications of waterborne intumescent fire-retardant polymer composite coatings. Finally, some key challenges associated with waterborne intumescent fire-retardant polymer composite coatings are highlighted, following which future perspectives and opportunities are proposed.
RESUMO
Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 µW m-1 K-2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1-10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
RESUMO
Fire-retardant coatings represent a universal cost-effective approach to providing fire protection for various substrates without compromising substrates' bulk properties. However, it has been attractive yet highly challenging to create waterborne polymeric fire-retardant coatings combining high-efficiency, generally strong adhesion, and self-repairability due to a lack of rational design principles. Inspired by mussel's unique adhesive, self-healing, and char-forming mechanisms, herein, a "group synergy" design strategy is proposed to realize the combination of self-healing, strong adhesion, and high efficiency in a fully polymeric fire-retardant coating via multiple synergies between catechol, phosphonic, and hydroxyethyl groups. As-created fire-retardant coating exhibits a rapid room-temperature self-healing ability and strong adhesion to (non)polar substrates due to multiple dynamic non-covalent interactions enabled by these groups. Because these functional groups enable the formation of a robust structurally intact yet slightly expanded char layer upon exposure to flame, a 200 µm-thick such coating can make extremely flammable polystyrene foam very difficult to ignite and self-extinguishing, which far outperforms previous strategies. Moreover, this coating can provide universal exceptional fire protection for a variety of substrates from polymer foams, and timber, to fabric and steel. This work presents a promising material design principle to create next-generation sustainable high-performance fire-retardant coatings for general fire protection.
RESUMO
Silicone rubber (SR), as one kind of highly valuable rubber material, has been widely used in many fields, e.g., construction, transportation, the electronics industry, automobiles, aviation, and biology, owing to its attractive properties, including high- and low-temperature resistance, weathering resistance, chemical stability, and electrical isolation, as well as transparency. Unfortunately, the inherent flammability of SR largely restricts its practical application in many fields that have high standard requirements for flame retardancy. Throughout the last decade, a series of flame-retardant strategies have been adopted which enhance the flame retardancy of SR and even enhance its other key properties, such as mechanical properties and thermal stability. This comprehensive review systematically reviewed the recent research advances in flame-retarded SR materials and summarized and introduced the up-to-date design of different types of flame retardants and their effects on flame-retardant properties and other performances of SR. In addition, the related flame-retardant mechanisms of the as-prepared flame-retardant SR materials are analyzed and presented. Moreover, key challenges associated with these various types of FRs are discussed, and future development directions are also proposed.
RESUMO
MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.
RESUMO
Recent years have witnessed the explosive development of highly sensitive smart sensors based on conductive polymer foam materials. However, the design and development of multifunctional polymeric foam composites as smart sensors applied in complex solvent and oil environments remain a critical challenge. Herein, we design and synthesize vinyl-terminated polytrifluoropropylmethylsiloxane through anionic ring-opening polymerization to fabricate fluorosilicone rubber foam (FSiRF) materials with nanoscale wrinkled surfaces and reactive Si-H groups via a green and rapid chemical foaming strategy. Based on the strong adhesion between FSiRF materials and consecutive oxidized ketjen black (OKB) nano-network, multifunctional FSiRF nanocomposites were prepared by a dip-coating strategy followed by fluoroalkylsilane modification. The optimized F-OKB@FSiRF nanocomposites exhibit outstanding mechanical flexibility in wide-temperature range (100 cycle compressions from -20 to 200 °C), structure stability (no detached particles after being immersed into various aqueous solutions for up to 15 days), surface superhydrophobicity (water contact angle of 154° and sliding angle of â¼7°), and tunable electrical conductivity (from 10-5 to 10-2 S m-1). Additionally, benefiting from the combined actions of multiple lines of defense (low surface energy groups, physical barriers, and "shielding effect"), the F-OKB@FSiRF sensor presents excellent anti-swelling property and high sensitivity in monitoring both large-deformation and tiny vibrations generated by knocking the beaker, ultrasonic action, agitating, and sinking objects in weak-polar or nonpolar solvents. This work conceivably provides a chemical strategy for the fabrication of multifunctional polymeric foam nanocomposite materials as smart sensors for broad applications.
RESUMO
Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.
RESUMO
Historically, fire disasters have killed numerous human lives, and caused tremendous property loss. Fire warning systems play a vital role in predicting fire risks, and are strongly desired to effectively prevent the disaster occurrence and significantly reduce the loss. Among the developed fire warning systems, thermoelectrics (TEs) and thermocells (TECs)-based fire warning materials are extremely important and indispensable in future research, owing to their unique capability of direct conversion between heat and electricity. Here, we present this review of the recent progress of TEs and TECs in fire warning field. Firstly, a brief introduction of existing fire warning systems is provided, including the mechanisms and features of various types. Then, the mechanisms of electronic TE (eTE), ionic TE (iTE) and TEC are elucidated. Next, the basic principles for the material preparation and device fabrication are discussed in their dimension sequence. Subsequently, some important advances or examples of TE fire warnings are highlighted in details. Finally, the challenges and prospects are outlooked.
RESUMO
In this work, a durable superhydrophobic fabric was fabricated by using a facile UV-induced surface covalent modification strategy. 2-isocyanatoethylmethacrylate (IEM) containing isocyanate groups can react with the pre-treated hydroxylated fabric, producing IEM molecules covalently grafted onto the fabric's surface, and the double bonds of IEM and dodecafluoroheptyl methacrylate (DFMA) underwent a photo-initiated coupling reaction under UV light radiation, resulting in the DFMA molecules further grafting onto the fabric's surface. The Fourier transform infrared, X-ray photoelectron spectroscopy and scanning electron microscopy results revealed that both IEM and DFMA were covalently grafted onto the fabric's surface. The formed rough structure and grafted low-surface-energy substance contributed to the excellent superhydrophobicity (water contact angle of ~162°) of the resultant modified fabric. Notably, such a superhydrophobic fabric can be used for efficient oil-water separation, for example a high separation efficiency of over 98%. More importantly, the modified fabric exhibited excellent durable superhydrophobicity in harsh conditions such as immersion in organic solvents for 72 h, an acidic or alkali solution (pH = 1-12) for 48 h, undergoing laundry washing for 3 h, exposure to extreme temperatures (from -196° to 120°), as well as damage such as 100 cycles of tape-peeling and a 100-cycle abrasion test; the water contact angle only slightly decreased from ~162° to 155°. This was attributed to the IEM and DFMA molecules grated onto the fabric through stable covalent interactions, which could be accomplished using the facile strategy, where the alcoholysis of isocyanate and the grafting of DFMA via click coupling chemistry were integrated into one-step. Therefore, this work provides a facile one-step surface modification strategy for preparing durable superhydrophobic fabric, which is promising for efficient oil-water separation.
RESUMO
An abundance of early warning graphene-based nano-materials and sensors have been developed to avoid and prevent the critical fire risk of combustible materials. However, there are still some limitations that should be addressed, such as the black color, high-cost and single fire warning response of graphene-based fire warning materials. Herein, we report an unexpected montmorillonite (MMT)-based intelligent fire warning materials that have excellent fire cyclic warning performance and reliable flame retardancy. Combining phenyltriethoxysilane (PTES) molecules, poly(p-phenylene benzobisoxazole) nanofiber (PBONF), and layers of MMT to form a silane crosslinked 3D nanonetwork system, the homologous PTES decorated MMT-PBONF nanocomposites are designed and fabricated via a sol-gel process and low temperature self-assembly method. The optimized nanocomposite paper shows good mechanical flexibility (good recovery after kneading or bending process), high tensile strength of â¼81 MPa and good water resistance. Furthermore, the nanocomposite paper exhibits high-temperature flame resistance (almost unchanged structure and size after 120 s combustion), sensitive flame alarm response (â¼0.3 s response once exposure onto a flame), cyclic fire warning performance (>40 cycles), and adaptability to complex fire situations (several fire attack and evacuation scenarios), showing promising applications for monitoring the critical fire risk of combustible materials. Therefore, this work paves a rational way for design and fabrication of MMT-based smart fire warning materials that combine excellent flame shielding and sensitive fire alarm functions.
RESUMO
Smart fire-warning sensors based on graphene oxide (GO) nanomaterials, via monitoring their temperature-responsive resistance transition, have attracted considerable interest for several years. However, an important question remains as to whether or not different oxidation degrees of the GO network can produce different impacts on fire-warning responses. In this study, we synthesized three types of GO nanoribbons (GONRs) with different oxidation degrees and morphologies, and thus prepared flame retardant polyethylene glycol (PEG)/GONR/montmorillonite (MMT) nanocomposite papers via a facile, solvent free, and low-temperature evaporation-induced assembly approach. The results showed that the presence of the GONRs in the PEG/MMT promoted the formation of an interconnected nacre-like layered structure, and that appropriate oxidation of the GONRs provided better reinforcing efficiency and lower creep deformation. Furthermore, the different oxidation degrees of the GONRs produced a tunable flame-detection response, and an ideal fire-warning signal in pre-combustion (e.g., 3, 18, and 33 s at 300 °C for the three PEG/GONR/MMT nanocomposite papers), superior to the previous GONR-based fire-warning materials. Clearly, this work provides a novel strategy for the design and development of smart fire-warning sensors.
RESUMO
A graphene oxide (GO)-based smart fire alarm sensor (FAS) has gained rapidly increasing research interest in fire safety fields recently. However, it still remains a huge challenge to obtain desirable GO-based FAS materials with integrated performances of mechanical flexibility/robustness, harsh environment-tolerance, high-temperature resistance, and reliable fire warning and protection. In this work, based on bionic design, the supermolecule melamine diborate (M·2B) was combined with GO nanosheets to form supramolecular cross-linking nanosystems, and the corresponding GO-M·2B (GO/MB) hybrid papers with a nacre-like micro/nano structure were successfully fabricated via a gel-dry method. The optimized GO/MB paper exhibits enhanced mechanical properties, e.g., tensile strength and toughness up to â¼122 MPa and â¼1.72 MJ/m3, respectively, which is â¼3.5 and â¼6.6 times higher than those of the GO paper. Besides, it also shows excellent structural stability even under acid/alkaline solution immersion and water bath ultrasonication conditions. Furthermore, due to the presence of promoting reduction effect and atom doping reactions in GO network, the resulting GO/MB network displays exceptional high-temperature resistance, sensitive fire alarm response (â¼0.72 s), and ultralong alarming time (>1200 s), showing promising fire safety and protection application prospects as desirable FAS and fire shielding material with excellent comprehensive performances. Therefore, this work provides inspiration for the design and fabrication of high-performance GO-based smart materials that combine fire shielding and alarm functions.
RESUMO
Smart fire alarm sensor (FAS) materials with mechanically robust, excellent flame retardancy as well as ultra-sensitive temperature-responsive capability are highly attractive platforms for fire safety application. However, most reported FAS materials can hardly provide sensitive, continuous and reliable alarm signal output due to their undesirable temperature-responsive, flame-resistant and mechanical performances. To overcome these hurdles, herein, we utilize the multi-amino molecule, named HCPA, that can serve as triple-roles including cross-linker, fire retardant and reducing agent for decorating graphene oxide (GO) sheets and obtaining the GO/HCPA hybrid networks. Benefiting from the formation of multi-interactions in hybrid network, the optimized GO/HCPA network exhibits significant increment in mechanical strength, e.g., tensile strength and toughness increase of ~ 2.3 and ~ 5.7 times, respectively, compared to the control one. More importantly, based on P and N doping and promoting thermal reduction effect on GO network, the excellent flame retardancy (withstanding ~ 1200 °C flame attack), ultra-fast fire alarm response time (~ 0.6 s) and ultra-long alarming period (> 600 s) are obtained, representing the best comprehensive performance of GO-based FAS counterparts. Furthermore, based on GO/HCPA network, the fireproof coating is constructed and applied in polymer foam and exhibited exceptional fire shielding performance. This work provides a new idea for designing and fabricating desirable FAS materials and fireproof coatings.
RESUMO
Polydimethylsiloxane (PDMS) foam materials with lightweight, excellent oil resistance and mechanical flexibility are highly needed for various practical applications in aerospace, transportation, and oil/water separation. However, traditional PDMS foam materials usually present poor chemical resistance and easily swell in various solvents, which greatly limits their potential application. Herein, novel fluorosilicone rubber foam (FSiRF) materials with different contents of trifluoropropyl lateral groups were designed and fabricated by a green (no solvents used) and rapid (<10 min foaming process) foaming/crosslinking approach at ambient temperature. Typically, vinyl-terminated poly(dimethyl-co-methyltrifluoropropyl) siloxanes with different fluorine contents of 0−50 mol% were obtained through ring-opening polymerization to effectively adjust the chemical resistance of the FSiRFs. Notably, the optimized FSiRF samples exhibit lightweight (~0.25 g/cm−3), excellent hydrophobicity/oleophilicity (WCA > 120°), reliable mechanical flexibility (complete recovery ability after stretching of 130% strain or compressing of >60%), and improved chemical resistance and structural stability in various solvents, making them promising candidates for efficient and continuous oil−water separation. This work provides an innovative concept to design and prepare advanced fluorosilicone rubber foam materials with excellent chemical resistance for potential oil−water separation application.
RESUMO
Fire has been giving rise to enormous loss of life and property worldwide annually. Early fire warning represents an active and effective means to avoid potential fire hazards before huge losses occur. Despite encouraging advances in early fire warning systems, to date there remains an urgent lack of the design of a durable, flexible, and universal early fire warning sensor for large-area practical applications. Herein, facile fabrication of a durable, flexible, large-scale early fire-warning sensor is demonstrated through constructing a hierarchical flame retardant nanocoating, composed of graphene oxide, poly(dimethylaminoethyl methacrylate), and hexagonal boron nitride, on cotton fabric in combination with the parallelly patterned conductive ink as built-in electrodes. As-designed large-scale sensor (>33 cm and extendable) exhibits a short alarming time of <3 s in response to external abnormal high temperature, heat, or fire. In addition to high washability, flexibility, resistance to abrasion and wear, this hierarchical nanocoating can self-extinguish, thus enabling the sensor to continue warning during fire. This work offers an inventive concept to develop a universal and large-scale very early fire-monitoring platform, which opens up new opportunities for their practical applications in effectively reducing fire-related casualties and economic losses.
RESUMO
Superhydrophobic surfaces are imperative in flexible polymer foams for diverse applications; however, traditional surface coatings on soft skeletons are often fragile and can hardly endure severe deformation, making them unstable and highly susceptible to cyclic loadings. Therefore, it remains a great challenge to balance their mutual exclusiveness of mechanical robustness and surface water repellency on flexible substrates. Herein, we describe how robust superhydrophobic surfaces on soft poly(dimethylsiloxane) (PDMS) foams can be achieved using an extremely simple, ultrafast, and environmentally friendly flame scanning strategy. The ultrafast flame treatment (1-3 s) of PDMS foams produces microwavy and nanosilica rough structures bonded on the soft skeletons, forming robust superhydrophobic surfaces (i.e., water contact angles (WCAs) > 155° and water sliding angles (WSAs) < 5°). The rough surface can be effectively tailored by simply altering the flame scanning speed (2.5-15.0 cm/s) to adjust the thermal pyrolysis of the PDMS molecules. The optimized surfaces display reliable mechanical robustness and excellent water repellency even after 100 cycles of compression of 60% strain, stretching of 100% strain, and bending of 90° and hostile environmental conditions (including acid/salt/alkali conditions, high/low temperatures, UV aging, and harsh cyclic abrasion). Moreover, such flame-induced superhydrophobic surfaces are easily peeled off from ice and can be healable even after severe abrasion cycles. Clearly, the flame scanning strategy provides a facile and versatile approach for fabricating mechanically robust and surface superhydrophobic PDMS foam materials for applications in complex conditions.
RESUMO
Flexible strain or pressure sensors have potential applications in electronic skin, healthcare, etc. It remains a challenge to explore multifunctional strain or pressure sensors that possess excellent water repellent and heating performance and hence can be used in harsh environments such as high moisture and low-temperature conditions. Here, a self-derived superhydrophobic and multifunctional polymer composite foam is prepared by adsorption of the Ag precursor in tetrahydrofuran (THF) onto the rubber sponge followed by reduction of Ag+ to Ag nanoparticles (AgNPs). During the Ag+ reduction in hydrazine solution, the swollen rubber sponge by THF is partially precipitated based on the nonsolvent-induced phase separation (NIPS). The NIPS creates a porous structure on the sponge surface and thus a high surface roughness, contributing to the material superhydrophobicity. The precipitated polymer wrapping the AgNPs could enhance the interaction between the individual AgNPs. The obtained conductive sponge composite possesses excellent Joule heating and photothermal performance and can be used as both a strain and pressure sensor. The conductive sponge composite sensor possesses good reliability and durability and can be applied to real-time monitoring of human body movements.