Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Angew Chem Int Ed Engl ; 62(35): e202307212, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37407432

RESUMO

Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions-25 wt.% LiCl and 62 wt.% H3 PO4 -cooled to -78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ ions become less hydrated and pair up with Cl- , ice-like water clusters form, and H⋅⋅⋅Cl- bonding strengthens. Surprisingly, this low-temperature solvation structure does not strengthen water molecules' O-H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O-H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH- and H+ , the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li-ion battery using LiMn2 O4 cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.

2.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742900

RESUMO

The advancement of super-resolution imaging (SRI) relies on fluorescent proteins with novel photochromic properties. Using light, the reversibly switchable fluorescent proteins (RSFPs) can be converted between bright and dark states for many photocycles and their emergence has inspired the invention of advanced SRI techniques. The general photoswitching mechanism involves the chromophore cis-trans isomerization and proton transfer for negative and positive RSFPs and hydration-dehydration for decoupled RSFPs. However, a detailed understanding of these processes on ultrafast timescales (femtosecond to millisecond) is lacking, which fundamentally hinders the further development of RSFPs. In this review, we summarize the current progress of utilizing various ultrafast electronic and vibrational spectroscopies, and time-resolved crystallography in investigating the on/off photoswitching pathways of RSFPs. We show that significant insights have been gained for some well-studied proteins, but the real-time "action" details regarding the bidirectional cis-trans isomerization, proton transfer, and intermediate states remain unclear for most systems, and many other relevant proteins have not been studied yet. We expect this review to lay the foundation and inspire more ultrafast studies on existing and future engineered RSFPs. The gained mechanistic insights will accelerate the rational development of RSFPs with enhanced two-way switching rate and efficiency, better photostability, higher brightness, and redder emission colors.


Assuntos
Prótons , Cristalografia , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Análise Espectral
3.
Annu Rev Phys Chem ; 71: 239-265, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32075503

RESUMO

The structure-function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.


Assuntos
Proteínas/química , Análise Espectral Raman/métodos , Transferência de Energia , Modelos Químicos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
4.
Phys Chem Chem Phys ; 23(27): 14636-14648, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34212170

RESUMO

Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore (i.e., HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated "floppy" chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck-Condon energy (EFC) or Stokes shift, and knrvs. EFC, as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type of systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Halogenação , Cinética , Luz , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica , Espectrometria de Fluorescência , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466257

RESUMO

Ratiometric indicators with long emission wavelengths are highly preferred in modern bioimaging and life sciences. Herein, we elucidated the working mechanism of a standalone red fluorescent protein (FP)-based Ca2+ biosensor, REX-GECO1, using a series of spectroscopic and computational methods. Upon 480 nm photoexcitation, the Ca2+-free biosensor chromophore becomes trapped in an excited dark state. Binding with Ca2+ switches the route to ultrafast excited-state proton transfer through a short hydrogen bond to an adjacent Glu80 residue, which is key for the biosensor's functionality. Inspired by the 2D-fluorescence map, REX-GECO1 for Ca2+ imaging in the ionomycin-treated human HeLa cells was achieved for the first time with a red/green emission ratio change (ΔR/R0) of ~300%, outperforming many FRET- and single FP-based indicators. These spectroscopy-driven discoveries enable targeted design for the next-generation biosensors with larger dynamic range and longer emission wavelengths.


Assuntos
Cálcio/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Fluorescência , Células HeLa , Humanos , Ligação de Hidrogênio , Prótons , Espectrometria de Fluorescência/métodos , Proteína Vermelha Fluorescente
6.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065754

RESUMO

Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.


Assuntos
Biliverdina/química , Cianobactérias/genética , Fotorreceptores Microbianos/química , Fitocromo/química , Substituição de Aminoácidos , Biliverdina/genética , Sítios de Ligação , Cianobactérias/metabolismo , Eletrônica , Cinética , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Fitocromo/genética , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise Espectral , Análise Espectral Raman , Tempo , Fatores de Tempo
7.
J Am Chem Soc ; 142(47): 19799-19803, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33186029

RESUMO

Despite their impressive performance as a solar absorber, much remains unknown on the fundamental properties of metal halide perovskites (MHPs). Their polar nature in particular is an intense area of study, and the relative permittivity (εr) is a parameter widely used to quantify polarization over a range of different time scales. In this report, we have exploited frequency-dependent time-resolved microwave conductivity (TRMC) to study how εr values of a range of MHPs change as a function of time, upon optical illumination. Further characterization of charge carriers and polarizability are conducted by femtosecond transient absorption and stimulated Raman spectroscopy. We find that changes in εr are roughly proportional to photogenerated carrier density but decay with a shorter time constant than conductance, suggesting that the presence of charge carriers alone does not determine polarization.

8.
Angew Chem Int Ed Engl ; 59(4): 1644-1652, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31692171

RESUMO

The molecular mechanisms for the photoconversion of fluorescent proteins remain elusive owing to the challenges of monitoring chromophore structural dynamics during the light-induced processes. We implemented time-resolved electronic and stimulated Raman spectroscopies to reveal two hidden species of an engineered ancestral GFP-like protein LEA, involving semi-trapped protonated and trapped deprotonated chromophores en route to photoconversion in pH 7.9 buffer. A new dual-illumination approach was examined, using 400 and 505 nm light simultaneously to achieve faster conversion and higher color contrast. Substitution of UV irradiation with visible light benefits bioimaging, while the spectral benchmark of a trapped chromophore with characteristic ring twisting and bridge-H bending motions enables rational design of functional proteins. With the improved H-bonding network and structural motions, the photoexcited chromophore could increase the photoswitching-aided photoconversion while reducing trapped species.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Análise Espectral Raman/métodos , Proteína Vermelha Fluorescente
9.
Angew Chem Int Ed Engl ; 59(49): 22007-22011, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805079

RESUMO

A non-aqueous proton electrolyte is devised by dissolving H3 PO4 into acetonitrile. The electrolyte exhibits unique vibrational signatures from stimulated Raman spectroscopy. Such an electrolyte exhibits unique characteristics compared to aqueous acidic electrolytes: 1) higher (de)protonation potential for a lower desolvation energy of protons, 2) better cycling stability by dissolution suppression, and 3) higher Coulombic efficiency owing to the lack of oxygen evolution reaction. Two non-aqueous proton full cells exhibit better cycling stability, higher Coulombic efficiency, and less self-discharge compared to the aqueous counterpart.

10.
Angew Chem Int Ed Engl ; 59(45): 19924-19928, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32710468

RESUMO

Oxidative anion insertion into graphite in an aqueous environment represents a significant challenge in the construction of aqueous dual-ion batteries. In dilute aqueous electrolytes, the oxygen evolution reaction (OER) dominates the anodic current before anions can be inserted into the graphite gallery. Herein, we report that the reversible insertion of Mg-Cl superhalides in graphite delivers a record-high reversible capacity of 150 mAh g-1 from an aqueous deep eutectic solvent comprising magnesium chloride and choline chloride. The insertion of Mg-Cl superhalides in graphite does not form staged graphite intercalation compounds; instead, the insertion of Mg-Cl superhalides makes the graphite partially turbostratic.

11.
J Chem Phys ; 151(20): 200901, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779327

RESUMO

The quest for capturing molecular movies of functional systems has motivated scientists and engineers for decades. A fundamental understanding of electronic and nuclear motions, two principal components of the molecular Schrödinger equation, has the potential to enable the de novo rational design for targeted functionalities of molecular machines. We discuss the development and application of a relatively new structural dynamics technique, femtosecond stimulated Raman spectroscopy with broadly tunable laser pulses from the UV to near-IR region, in tracking the coupled electronic and vibrational motions of organic chromophores in solution and protein environments. Such light-sensitive moieties hold broad interest and significance in gaining fundamental knowledge about the intramolecular and intermolecular Hamiltonian and developing effective strategies to control macroscopic properties. Inspired by recent experimental and theoretical advances, we focus on the in situ characterization and spectroscopy-guided tuning of photoacidity, excited state proton transfer pathways, emission color, and internal conversion via a conical intersection.

12.
Angew Chem Int Ed Engl ; 58(44): 15910-15915, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31478325

RESUMO

Plating battery electrodes typically deliver higher specific capacity values than insertion or conversion electrodes because the ion charge carriers represent the sole electrode active mass, and a host electrode is unnecessary. However, reversible plating electrodes are rare for electronically insulating nonmetals. Now, a highly reversible iodine plating cathode is presented that operates on the redox couples of I2 /[ZnIx (OH2 )4-x ]2-x in a water-in-salt electrolyte. The iodine plating cathode with the theoretical capacity of 211 mAh g-1 plates on carbon fiber paper as the current collector, delivering a large areal capacity of 4 mAh cm-2 . Tunable femtosecond stimulated Raman spectroscopy coupled with DFT calculations elucidate a series of [ZnIx (OH2 )4-x ]2-x superhalide ions serving as iodide vehicles in the electrolyte, which eliminates most free iodide ions, thus preventing the consequent dissolution of the cathode-plated iodine as triiodides.

13.
Phys Chem Chem Phys ; 20(18): 12517-12526, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29708241

RESUMO

Photoactivated proton transfer (PT) wire is responsible for the glow of green fluorescent protein (GFP), which is crucial for bioimaging and biomedicine. In this work, a new GFP-S65T/S205V double mutant is developed from wild-type GFP in which the PT wire is significantly modified. We implement femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS) to delineate the PT process in action. The excited state proton transfer proceeds on the ∼110 ps timescale, which infers that the distance of one key link (water to T203) in the PT wire of GFP-S205V is shortened by the extra S65T mutation. The rise of an imidazolinone ring deformation mode at ∼871 cm-1 in FSRS further suggests that this PT reaction is in a concerted manner. A ∼4 ps component prior to large-scale proton dissociation through the PT wire is also retrieved, indicative of some small-scale proton motions and heavy-atom rearrangement in the vicinity of the chromophore. Our work provides deep insights into the novel hybrid PT mechanism in engineered GFP and demonstrates the power of tunable FSRS methodology in tracking ultrafast photoreactions with the desirable structural specificity in physiological environments.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Ligação de Hidrogênio , Imidazóis/química , Luz , Modelos Moleculares , Mutação , Engenharia de Proteínas , Prótons , Teoria Quântica , Espectrometria de Fluorescência , Análise Espectral Raman
14.
Molecules ; 23(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200474

RESUMO

Tracking vibrational motions during a photochemical or photophysical process has gained momentum, due to its sensitivity to the progression of reaction and change of environment. In this work, we implemented an advanced ultrafast vibrational technique, femtosecond-stimulated Raman spectroscopy (FSRS), to monitor the excited state structural evolution of an engineered green fluorescent protein (GFP) single-site mutant S205V. This mutation alters the original excited state proton transfer (ESPT) chain. By strategically tuning the Raman pump to different wavelengths (i.e., 801, 539, and 504 nm) to achieve pre-resonance with transient excited state electronic bands, the characteristic Raman modes of the excited protonated (A*) chromophore species and intermediate deprotonated (I*) species can be selectively monitored. The inhomogeneous distribution/population of A* species go through ESPT with a similar ~300 ps time constant, confirming that bridging a water molecule to protein residue T203 in the ESPT chain is the rate-limiting step. Some A* species undergo vibrational cooling through high-frequency motions on the ~190 ps time scale. At early times, a portion of the largely protonated A* species could also undergo vibrational cooling or return to the ground state with a ~80 ps time constant. On the photoproduct side, a ~1330 cm-1 delocalized motion is observed, with dispersive line shapes in both the Stokes and anti-Stokes FSRS with a pre-resonance Raman pump, which indicates strong vibronic coupling, as the mode could facilitate the I* species to reach a relatively stable state (e.g., the main fluorescent state) after conversion from A*. Our findings disentangle the contributions of various vibrational motions active during the ESPT reaction, and offer new structural dynamics insights into the fluorescence mechanisms of engineered GFPs and other analogous autofluorescent proteins.


Assuntos
Proteínas de Fluorescência Verde/genética , Mutação/genética , Análise Espectral Raman/métodos , Elétrons , Cinética , Proteínas Mutantes/química , Prótons , Fatores de Tempo , Vibração
15.
Phys Chem Chem Phys ; 19(10): 7138-7146, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28230868

RESUMO

Fluorescent protein biosensors are popular reporters for biological processes and life sciences, but their fundamental working mechanisms remain unclear. To characterize the functional fluorescence events on their native timescales, we implemented wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) to shed light on a blue-green emission-ratiometric fluorescent protein based Ca2+ biosensor with a single Pro377Arg mutation. The transient Raman modes of the embedded chromophore from ca. 1000-1650 cm-1 exhibit characteristic intensity and frequency dynamics which infer the underlying atomic motions and photochemical reaction stages. Our experimental study reveals the hidden structural inhomogeneity of the protein local environment upon Ca2+ binding with the mutated arginine residue trapping multiple chromophore subpopulations, which manifest distinct time constants of ∼16 and 90 ps for excited state proton transfer (ESPT) following 400 nm photoexcitation. The altered ESPT reaction pathways and emission properties of the Ca2+ biosensor represent the foundational step of rationally designing advanced fluorescent protein biosensors to tune their functionalities by site-specifically altering the local environment (e.g., the active site) of the embedded chromophore.


Assuntos
Técnicas Biossensoriais , Cálcio/análise , Proteínas Luminescentes/química , Sítios de Ligação , Ligação de Hidrogênio , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese Sítio-Dirigida , Espectrometria de Fluorescência , Análise Espectral Raman
16.
Proc Natl Acad Sci U S A ; 111(28): 10191-6, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24987121

RESUMO

Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca(2+)) sensing. This study reveals that, in the absence of Ca(2+), the dominant skeletal motion is a ∼ 170 cm(-1) phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼ 30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca(2+) binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca(2+) in physiologically relevant environments.


Assuntos
Técnicas Biossensoriais/métodos , Cálcio/análise , Calmodulina/química , Proteínas de Fluorescência Verde/química , Proteínas Recombinantes de Fusão/química , Animais , Calmodulina/genética , Cátions Bivalentes/análise , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes de Fusão/genética , Espectrometria de Fluorescência , Análise Espectral Raman
17.
Chemistry ; 21(17): 6481-90, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25761197

RESUMO

Imaging Ca(2+) dynamics in living systems holds great potential to advance neuroscience and cellular biology. G-GECO1.1 is an intensiometric fluorescent protein Ca(2+) biosensor with a Thr-Tyr-Gly chromophore. The protonated chromophore emits green upon photoexcitation via excited-state proton transfer (ESPT). Upon Ca(2+) binding, a significant population of the chromophores becomes deprotonated. It remains elusive how the chromophore structurally evolves prior to and during ESPT, and how it is affected by Ca(2+) . We use femtosecond stimulated Raman spectroscopy to dissect ESPT in both the Ca(2+) -free and bound states. The protein chromophores exhibit a sub-200 fs vibrational frequency shift due to coherent small-scale proton motions. After wavepackets move out of the Franck-Condon region, ESPT gets faster in the Ca(2+) -bound protein, indicative of the formation of a more hydrophilic environment. These results reveal the governing structure-function relationship of Ca(2+) -sensing protein biosensors.


Assuntos
Cálcio/química , Proteínas de Fluorescência Verde/química , Prótons , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos
18.
J Phys Chem A ; 117(29): 6024-42, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23642152

RESUMO

To understand chemical reactivity of molecules in condensed phase in real time, a structural dynamics technique capable of monitoring molecular conformational motions on their intrinsic time scales, typically on femtoseconds to picoseconds, is needed. We have studied a strong photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS, pK(a)* ≈ 0) in pure methanol and observed that excited-state proton transfer (ESPT) is absent, in sharp contrast with our previous work on HPTS in aqueous solutions wherein ESPT prevails following photoexcitation. Two transient vibrational marker bands at ~1477 (1454) and 1532 (1528) cm(-1) appear in CH3OH (CD3OD), respectively, rising within the instrument response time of ~140 fs and decaying with 390-470 (490-1400) fs and ~200 ps time constants in CH3OH (CD3OD). We attribute the mode onset to small-scale coherent proton motion along the pre-existing H-bonding chain between HPTS and methanol, and the two decay stages to the low-frequency skeletal motion-modulated Franck-Condon relaxation within ~1 ps and subsequent rotational diffusion of H-bonding partners in solution before fluorescence. The early time kinetic isotope effect (KIE) of ~3 upon methanol deuteration argues active proton motions particularly within the first few picoseconds when coherent skeletal motions are underdamped. Pronounced quantum beats are observed for high-frequency modes consisting of strong phenolic COH rocking (1532 cm(-1)) or H-out-of-plane wagging motions (952 cm(-1)) due to anharmonic coupling to coherent low-frequency modes impulsively excited at ca. 96, 120, and 168 cm(-1). The vivid illustration of atomic motions of HPTS in varying H-bonding geometry with neighboring methanol molecules unravels the multidimensional energy relaxation pathways immediately following photoexcitation, and provides compelling evidence that, in lieu of ESPT, the photoacidity of HPTS promptly activates characteristic low-frequency skeletal motions to search phase space mainly concerning the phenolic end and to efficiently dissipate vibrational energy via skeletal deformation and proton shuttling motions within the intermediate, relatively confined excited-state HPTS-methanol complex on a solvent-dependent dynamic potential energy surface.


Assuntos
Sulfonatos de Arila/química , Metanol/química , Análise Espectral Raman , Óxido de Deutério/química , Transporte de Elétrons , Ligação de Hidrogênio , Fatores de Tempo , Vibração
19.
Biosensors (Basel) ; 13(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36831983

RESUMO

Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities.


Assuntos
Cálcio , Prótons , Proteínas de Fluorescência Verde/química , Cálcio/química , Proteínas Luminescentes , Proteína Vermelha Fluorescente
20.
Protein Sci ; 32(1): e4517, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403093

RESUMO

Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.


Assuntos
Análise Espectral Raman , Água , Proteínas Luminescentes/genética , Proteínas Luminescentes/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA