Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells Tissues Organs ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310851

RESUMO

INTRODUCTION: Ascending aortic aneurysm is a serious health risk. In order to study ascending aortic aneurysms, elastase and calcium ion treatment for aneurysm formation are mainly used, but their aneurysm formation time is long, the aneurysm formation rate is low. Thus, this study aimed to construct a rat model of ascending aorta aneurysm with a short modeling time and high aneurysm formation rate, which may mimic the pathological processes of human ascending aorta aneurysm. METHODS: Cushion needles with different pipe diameters (1.0, 1.2, 1.4 and 1.6 mm) were used to establish a human-like rat model of ascending aortic aneurysm by narrowing the ascending aorta of rats and increasing the force of blood flow on the vessel wall. The vascular diameters were evaluated using color Doppler ultrasonography after two weeks. The characteristics of ascending aortic aneurysm in rats were detected by Masson's trichrome staining, Verhoeff's Van Gieson staining and hematoxylin and eosin staining while RT-PCR were utilized to assess the total RNA of cytokine interleukin-1ß, interleukin 6, transforming growth factor-beta1 and metalloproteinase 2. RESULTS: Two weeks after surgery, the ultrasound images and the statistical analysis demonstrated that the diameter of the ascending aorta in rats increased more than 1.5 times, similar to that in humans, indicating the success of animal modeling of ascending aortic aneurysm. Moreover, the optimal constriction diameter of the ascending aortic aneurysm model is 1.4 mm by the statistical analysis of the rate of ascending aortic aneurysm and mortality rate in rats with different constriction diameters. CONCLUSIONS: The human-like ascending aortic aneurysm model developed in this study can be used for the studies of the pathological processes and mechanisms in ascending aortic aneurysm in a more clinically relevant fashion.

2.
Adv Mater ; 36(18): e2308742, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270293

RESUMO

Integrating optically active components into chiral photonic cellulose to fabricate circularly polarized luminescent materials has transformative potential in disease detection, asymmetric reactions, and anticounterfeiting techniques. However, the lack of cellulose-based left-handed circularly polarized light (L-CPL) emissions hampers the progress of these chiral functionalizations. Here, this work proposes an unprecedented strategy: incorporating a chiral nematic organization of hydroxypropyl cellulose with robust aggregation-induced emission luminogens to generate intense L-CPL emission. By utilizing N,N-dimethylformamide as a good solvent for fluorescent components and cellulose matrices, this work produces a right-handed chiral nematic structure film with a uniform appearance in reflective and fluorescent states. Remarkably, this system integrates a high asymmetric factor (0.51) and an impressive emission quantum yield (55.8%) into one fascinating composite. More meaningfully, this approach is versatile, allowing for the incorporation of luminogen derivatives emitting multicolored L-CPL. These chiral fluorescent films possess exceptional mechanical flexibility (toughness up to 0.9 MJ m-3) and structural stability even under harsh environmental exposures, making them promising for the fabrication of various products. Additionally, these films can be cast on the fabrics to reveal multilevel and durable anticounterfeiting capabilities or used as a chiral light source to induce enantioselective photopolymerization, thereby offering significant potential for diverse practical applications.

3.
Nat Cell Biol ; 26(6): 917-931, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714852

RESUMO

Upon endoplasmic reticulum (ER) stress, activation of the ER-resident transmembrane protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1) initiates a key branch of the unfolded protein response (UPR) through unconventional splicing generation of the transcription factor X-box-binding protein 1 (XBP1s). Activated IRE1 can form large clusters/foci, whose exact dynamic architectures and functional properties remain largely elusive. Here we report that, in mammalian cells, formation of IRE1α clusters is an ER membrane-bound phase separation event that is coupled to the assembly of stress granules (SGs). In response to different stressors, IRE1α clusters are dynamically tethered to SGs at the ER. The cytosolic linker portion of IRE1α possesses intrinsically disordered regions and is essential for its condensation with SGs. Furthermore, disruption of SG assembly abolishes IRE1α clustering and compromises XBP1 mRNA splicing, and such IRE1α-SG coalescence engenders enrichment of the biochemical components of the pro-survival IRE1α-XBP1 pathway during ER stress. Our findings unravel a phase transition mechanism for the spatiotemporal assembly of IRE1α-SG condensates to establish a more efficient IRE1α machinery, thus enabling higher stress-handling capacity.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Humanos , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Animais , Splicing de RNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/genética , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas , Camundongos , Células HeLa , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA