Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2407394121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159375

RESUMO

Aedes aegypti mosquitoes are major vectors of dengue, chikungunya, and other arboviral diseases. Ae. aegypti's capacity to reproduce and to spread disease depends on the female mosquitoes' ability to obtain blood meals and find water-filled containers in which to lay eggs (oviposit). While humidity sensation (hygrosensation) has been implicated in these behaviors, the specific hygrosensory pathways involved have been unclear. Here, we establish the distinct molecular requirements and anatomical locations of Ae. aegypti Dry Cells and Moist Cells and examine their contributions to behavior. We show that Dry Cell and Moist Cell responses to humidity involve different ionotropic receptor (IR) family sensory receptors, with dry air-activated Dry Cells reliant upon the IR Ir40a, and humid air-activated Moist Cells upon Ir68a. Both classes of hygrosensors innervate multiple antennal sensilla, including sensilla ampullacea near the antennal base as well as two classes of coeloconic sensilla near the tip. Dry Cells and Moist Cells each support behaviors linked to mosquito reproduction but contribute differently: Ir40a-dependent Dry Cells act in parallel with Ir68a-dependent Moist Cells to promote blood feeding, while oviposition site seeking is driven specifically by Ir68a-dependent Moist Cells. Together these findings reveal the importance of distinct hygrosensory pathways in blood feeding and oviposition site seeking and suggest Ir40a-dependent Dry Cells and Ir68a-dependent Moist Cells as potential targets for vector control strategies.


Assuntos
Aedes , Comportamento Alimentar , Umidade , Mosquitos Vetores , Oviposição , Animais , Aedes/fisiologia , Oviposição/fisiologia , Feminino , Comportamento Alimentar/fisiologia , Mosquitos Vetores/fisiologia , Sensilas/fisiologia , Receptores Ionotrópicos de Glutamato/metabolismo , Antenas de Artrópodes/fisiologia
2.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382467

RESUMO

Animals commonly use thermosensation, the detection of temperature and its variation, for defensive purposes: to maintain appropriate body temperature and to avoid tissue damage. However, some animals also use thermosensation to go on the offensive: to hunt for food. The emergence of heat-dependent foraging behavior has been accompanied by the evolution of diverse thermosensory organs of often exquisite thermosensitivity. These organs detect the heat energy emitted from food sources that range from nearby humans to trees burning in a forest kilometers away. Here, we examine the biophysical considerations, anatomical specializations and molecular mechanisms that underlie heat-driven foraging. We focus on three groups of animals that each meet the challenge of detecting heat from potential food sources in different ways: (1) disease-spreading vector mosquitoes, which seek blood meals from warm-bodied hosts at close range, using warming-inhibited thermosensory neurons responsive to conductive and convective heat flow; (2) snakes (vipers, pythons and boas), which seek warm-blooded prey from ten or more centimeters away, using warmth-activated thermosensory neurons housed in an organ specialized to harvest infrared radiation; and (3) fire beetles, which maximize their offspring's feeding opportunities by seeking forest fires from kilometers away, using mechanosensory neurons housed in an organ specialized to convert infrared radiation into mechanosensory stimuli. These examples highlight the diverse ways in which animals exploit the heat emanating from potential food sources, whether this heat reflects ongoing metabolic activity or a recent lightning strike, to secure a nutritious meal for themselves or for their offspring.


Assuntos
Besouros , Culicidae , Animais , Temperatura Alta , Mosquitos Vetores , Serpentes
3.
Neuron ; 111(6): 874-887.e8, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640768

RESUMO

To reproduce and to transmit disease, female mosquitoes must obtain blood meals and locate appropriate sites for egg laying (oviposition). While distinct sensory cues drive each behavior, humidity contributes to both. Here, we identify the mosquito's humidity sensors (hygrosensors). Using generalizable approaches designed to simplify genetic analysis in non-traditional model organisms, we demonstrate that the ionotropic receptor Ir93a mediates mosquito hygrosensation as well as thermosensation. We further show that Ir93a-dependent sensors drive human host proximity detection and blood-feeding behavior, consistent with the overlapping short-range heat and humidity gradients these targets generate. After blood feeding, gravid females require Ir93a to seek high humidity associated with preferred egg-laying sites. Reliance on Ir93a-dependent sensors to promote blood feeding and locate potential oviposition sites is shared between the malaria vector Anopheles gambiae and arbovirus vector Aedes aegypti. These Ir93a-dependent systems represent potential targets for efforts to control these human disease vectors.


Assuntos
Anopheles , Malária , Animais , Humanos , Feminino , Oviposição , Umidade , Mosquitos Vetores , Comportamento Alimentar
4.
Front Microbiol ; 9: 620, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651285

RESUMO

Peptidoglycan is the fundamental structural constituent of the bacterial cell wall. Despite many years of research, the architecture of peptidoglycan is still largely elusive. Here, we report the high-resolution architecture of peptidoglycan from the model Gram-positive bacterium Bacillus subtilis. We provide high-resolution evidence of peptidoglycan architecture remodeling at different growth stages. Side wall peptidoglycan from B. subtilis strain AS1.398 changed from an irregular architecture in exponential growth phase to an ordered cable-like architecture in stationary phase. Thickness of side wall peptidoglycan was found to be related with growth stages, with a slight increase after transition to stationary phase. Septal disks were synthesized progressively toward the center, while the surface features were less clear than those imaged with side walls. Compared with previous studies, our results revealed slight differences in architecture of peptidoglycan from different B. subtilis strains, expanding our knowledge about the architectural features of B. subtilis peptidoglycan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA