RESUMO
BACKGROUND & AIMS: Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. METHODS: We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model. RESULTS: Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid ß-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. CONCLUSIONS: We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.
Assuntos
Butiratos , Epigênese Genética , Microbioma Gastrointestinal , Cirrose Hepática Biliar , Reprogramação Metabólica , Células Supressoras Mieloides , Animais , Feminino , Humanos , Masculino , Camundongos , Butiratos/metabolismo , Reprogramação Celular , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/microbiologia , Fezes/microbiologia , Fezes/química , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/microbiologia , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêuticoRESUMO
BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic progressive liver disease characterized by the infiltration of intrahepatic tissue-resident memory CD8 + T cells (T RM ). Itaconate has demonstrated therapeutic potential in modulating inflammation. An unmet need for PSC is the reduction of biliary inflammation, and we hypothesized that itaconate may directly modulate pathogenic T RM . APPROACH AND RESULTS: The numbers of intrahepatic CD103 + T RM were evaluated by immunofluorescence in PSC (n = 32), and the serum levels of itaconate in PSC (n = 64), primary biliary cholangitis (PBC) (n = 60), autoimmune hepatitis (AIH) (n = 49), and healthy controls (n = 109) were determined by LC-MS/MS. In addition, the frequencies and immunophenotypes of intrahepatic T RM using explants from PSC (n = 5) and healthy donors (n = 6) were quantitated by flow cytometry. The immunomodulatory properties of 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) on CD103 + T RM were studied in vitro. Finally, the therapeutic potential of itaconate was studied by the administration of 4-OI and deficiency of immune-responsive gene 1 (encodes the aconitate decarboxylase producing itaconate) in murine models of PSC. Intrahepatic CD103 + T RM was significantly expanded in PSC and was positively correlated with disease severity. Serum itaconate levels decreased in PSC. Importantly, 4-OI inhibited the induction and effector functions of CD103 + T RM in vitro. Mechanistically, 4-OI blocked DNA demethylation of RUNX3 in CD8 + T cells. Moreover, 4-OI reduced intrahepatic CD103 + T RM and ameliorated liver injury in murine models of PSC. CONCLUSIONS: Itaconate exerted immunomodulatory activity on CD103 + T RM in both in vitro and murine PSC models. Our study suggests that targeting pathogenic CD103 + T RM with itaconate has therapeutic potential in PSC.
Assuntos
Colangite Esclerosante , Hepatopatias , Animais , Camundongos , Colangite Esclerosante/patologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , InflamaçãoRESUMO
BACKGROUND: In patients with primary biliary cholangitis (PBC) treated with ursodeoxycholic acid (UDCA), the presence of moderate-to-severe interface hepatitis is associated with a higher risk of liver transplantation and death. This highlights the need for novel treatment approaches. In this study, we aimed to investigate whether combination therapy of UDCA and immunosuppressant (IS) was more effective than UDCA monotherapy. METHODS: We conducted a multicenter study involving PBC patients with moderate-to-severe interface hepatitis who underwent paired liver biopsies. Firstly, we compared the efficacy of the combination therapy with UDCA monotherapy on improving biochemistry, histology, survival rates, and prognosis. Subsequently we investigated the predictors of a beneficial response. RESULTS: This retrospective cohort study with prospectively collected data was conducted in China from January 2009 to April 2023. Of the 198 enrolled patients, 32 underwent UDCA monotherapy, while 166 received combination therapy, consisting of UDCA combined with prednisolone, prednisolone plus mycophenolate mofetil (MMF), or prednisolone plus azathioprine (AZA). The monotherapy group was treated for a median duration of 37.6 months (IQR 27.5-58.1), and the combination therapy group had a median treatment duration of 39.3 months (IQR 34.5-48.8). The combination therapy showed a significantly greater efficacy in reducing fibrosis compared to UDCA monotherapy, with an 8.3-fold increase in the regression rate (from 6.3% to 52.4%, P < 0.001). Other parameters, including biochemistry, survival rates, and prognosis, supported its effectiveness. Baseline IgG >1.3 × ULN and ALP <2.4 × ULN were identified as predictors of regression following the combination therapy. A predictive score named FRS, combining these variables, accurately identified individuals achieving fibrosis regression with a cut-off point of ≥ -0.163. The predictive value was validated internally and externally. CONCLUSION: Combination therapy with IS improves outcomes in PBC patients with moderate-to-severe interface hepatitis compared to UDCA monotherapy. Baseline IgG and ALP are the most significant predictors of fibrosis regression. The new predictive score, FRS, incorporating baseline IgG and ALP, can effectively identify individuals who would benefit from the combination therapy.
Assuntos
Hepatite , Cirrose Hepática Biliar , Humanos , Cirrose Hepática Biliar/diagnóstico , Cirrose Hepática Biliar/tratamento farmacológico , Colagogos e Coleréticos/uso terapêutico , Estudos Retrospectivos , Resultado do Tratamento , Ácido Ursodesoxicólico/uso terapêutico , Imunossupressores/uso terapêutico , Prednisolona/uso terapêutico , Terapia de Imunossupressão , Hepatite/complicações , Imunoglobulina GRESUMO
BACKGROUNDS: Prolyl-4-hydroxylases (P4Hs) are key enzymes in collagen synthesis. The P4HA subunit (P4HA1, P4HA2, and P4HA3) contains a substrate binding and catalyzation domain. We postulated that P4HA2 would play a key role in the cholangiocyte pathology of cholestatic liver diseases. METHODS: We studied humans with primary biliary cholangitis (PBC) and Primary sclerosing cholangitis (PSC), P4HA2 -/- mice injured by DDC, and P4HA2 -/- /MDR2 -/- double knockout mice. A parallel study was performed in patients with PBC, PSC, and controls using immunohistochemistry and immunofluorescence. In the murine model, the level of ductular reaction and biliary fibrosis were monitored by histology, qPCR, immunohistochemistry, and Western blotting. Expression of Yes1 Associated Transcriptional Regulator (YAP) phosphorylation was measured in isolated mouse cholangiocytes. The mechanism of P4HA2 was explored in RBE and 293T cell lines by using qPCR, Western blot, immunofluorescence, and co-immunoprecipitation. RESULTS: The hepatic expression level of P4HA2 was highly elevated in patients with PBC or PSC. Ductular reactive cholangiocytes predominantly expressed P4HA2. Cholestatic patients with more severe liver injury correlated with levels of P4HA2 in the liver. In P4HA2 -/- mice, there was a significantly reduced level of ductular reaction and fibrosis compared with controls in the DDC-induced chronic cholestasis. Decreased liver fibrosis and ductular reaction were observed in P4HA2 -/- /MDR2 -/- mice compared with MDR2 -/- mice. Cholangiocytes isolated from P4HA2 -/- /MDR2 -/- mice displayed a higher level of YAP phosphorylation, resulting in cholangiocytes proliferation inhibition. In vitro studies showed that P4HA2 promotes RBE cell proliferation by inducing SAV1 degradation, eventually resulting in the activation of YAP. CONCLUSIONS: P4HA2 promotes hepatic ductular reaction and biliary fibrosis by regulating the SAV1-mediated Hippo signaling pathway. P4HA2 is a potential therapeutic target for PBC and PSC.
Assuntos
Colangite Esclerosante , Colestase , Hepatopatias , Animais , Humanos , Camundongos , Colangite Esclerosante/patologia , Colestase/metabolismo , Modelos Animais de Doenças , Fibrose , Fígado/patologia , Cirrose Hepática/patologia , Hepatopatias/patologia , Camundongos Knockout , Pró-Colágeno-Prolina Dioxigenase/metabolismoRESUMO
BACKGROUND & AIMS: Macrophages are key elements in the pathogenesis of cholestatic liver diseases. Arid3a plays a prominent role in the biologic properties of hematopoietic stem cells, B lymphocytes and tumor cells, but its ability to modulate macrophage function during cholestasis remains unknown. METHODS: Gene and protein expression and cellular localization were assessed by q-PCR, immunohistochemistry, immunofluorescence staining and flow cytometry. We generated myeloid-specific Arid3a knockout mice and established three cholestatic murine models. The transcriptome was analyzed by RNA-seq. A specific inhibitor of the Mertk receptor was used in vitro and in vivo. Promoter activity was determined by chromatin immunoprecipitation-seq against Arid3a and a luciferase reporter assay. RESULTS: In cholestatic murine models, myeloid-specific deletion of Arid3a alleviated cholestatic liver injury (accompanied by decreased accumulation of macrophages). Arid3a-deficient macrophages manifested a more reparative phenotype, which was eliminated by in vitro treatment with UNC2025, a specific inhibitor of the efferocytosis receptor Mertk. Efferocytosis of apoptotic cholangiocytes was enhanced in Arid3a-deficient macrophages via upregulation of Mertk. Arid3a negatively regulated Mertk transcription by directly binding to its promoter. Targeting Mertk in vivo effectively reversed the protective phenotype of Arid3a deficiency in macrophages. Arid3a was upregulated in hepatic macrophages and circulating monocytes in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Mertk was correspondingly upregulated and negatively correlated with Arid3a expression in PBC and PSC. Mertk+ cells were located in close proximity to cholangiocytes, while Arid3a+ cells were scattered among immune cells with greater spatial distances to hyperplastic cholangiocytes in PBC and PSC. CONCLUSIONS: Arid3a promotes cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes by macrophages during cholestasis. The Arid3a-Mertk axis is a promising novel therapeutic target for cholestatic liver diseases. IMPACT AND IMPLICATIONS: Macrophages play an important role in the pathogenesis of cholestatic liver diseases. This study reveals that macrophages with Arid3a upregulation manifest a pro-inflammatory phenotype and promote cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes during cholestasis. Although we now offer a new paradigm to explain how efferocytosis is regulated in a myeloid cell autonomous manner, the regulatory effects of Arid3a on chronic liver diseases remain to be further elucidated.
Assuntos
Colestase , Proteínas de Ligação a DNA , Hepatopatias , Fatores de Transcrição , c-Mer Tirosina Quinase , Animais , Camundongos , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Colestase/metabolismo , Hepatopatias/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Fagocitose/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND & AIMS: The N6-methyladenosine (m6A) reader YTH domain-containing family protein 2 (YTHDF2) is critically involved in a multiplicity of biological processes by mediating the degradation of m6A modified mRNAs. Based on our current understanding of this process, we hypothesized that YTHDF2 will play a role in the natural history and function of myeloid-derived suppressor cells (MDSC) and in particular in AIH. APPROACH & RESULTS: We took advantage of YTHDF2 conditional knock-out mice to first address the phenotype and function of MDSCs by flow cytometry. Importantly, the loss of YTHDF2 resulted in a gradual elevation of MDSCs including PMN-MDSCs both in liver and ultimately in the BM. Notably, YTHDF2 deficiency in myeloid cells attenuated concanavalin (ConA)-induced liver injury, with enhanced expansion and chemotaxis to liver. Furthermore, MDSCs from Ythdf2CKO mice had a greater suppressive ability to inhibit the proliferation of T cells. Using multi-omic analysis of m6A RNA immunoprecipitation (RIP) and mRNA sequencing, we noted RXRα as potential target of YTHDF2. Indeed YTHDF2-RIP-qPCR confirmed that YTHDF2 directly binds RXRα mRNA thus promoting degradation and decreasing gene expression. Finally, by IHC and immunofluorescence, YTHDF2 expression was significantly upregulated in the liver of patients with AIH which correlated with the degree of inflammation. CONCLUSION: Suppression of YTHDF2 enhances the expansion, chemotaxis and suppressive function of MDSCs and our data reveals a unique therapeutical target in immune mediated hepatitis.
Assuntos
Hepatite Autoimune , Células Supressoras Mieloides , Animais , Camundongos , Células Mieloides , Linfócitos T , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND AND AIMS: Autoimmune hepatitis (AIH) is a rare and chronic autoimmune liver disease. While genetic factors are believed to play a crucial role in the etiopathogenesis of AIH, our understanding of these genetic risk factors is still limited. In this study, we aimed to identify susceptibility loci to further understand the pathogenesis of this disease. APPROACH AND RESULTS: We conducted a case-control association study of 1,622 Chinese patients with AIH type 1 and 10,466 population controls from two independent cohorts. A meta-analysis was performed to ascertain variants associated with AIH type 1. A single-nucleotide polymorphism within the human leukocyte antigen (HLA) region showed the strongest association with AIH (rs6932730: OR = 2.32; p = 9.21 × 10-73 ). The meta-analysis also identified two non-HLA loci significantly associated with AIH: CD28/CTLA4/ICOS on 2q33.3 (rs72929257: OR = 1.31; p = 2.92 × 10-9 ) and SYNPR on 3p14.2 (rs6809477: OR = 1.25; p = 5.48 × 10-9 ). In silico annotation, reporter gene assays, and CRISPR activation experiments identified a distal enhancer at 2q33.3 that regulated expression of CTLA4. In addition, variants near STAT1/STAT4 (rs11889341: OR = 1.24; p = 1.34 × 10-7 ), LINC00392 (rs9564997: OR = 0.81; p = 2.53 × 10-7 ), IRF8 (rs11117432: OR = 0.72; p = 6.10 × 10-6 ), and LILRA4/LILRA5 (rs11084330: OR = 0.65; p = 5.19 × 10-6 ) had suggestive association signals with AIH. CONCLUSIONS: Our study identifies two novel loci (CD28/CTLA4/ICOS and SYNPR) exceeding genome-wide significance and suggests four loci as potential risk factors. These findings highlight the importance of costimulatory signaling and neuro-immune interaction in the pathogenesis of AIH.
Assuntos
Hepatite Autoimune , Antígenos CD28/genética , Antígeno CTLA-4/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA , Hepatite Autoimune/genética , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
OBJECTIVE: Multiple clinical similarities exist between IgG4-related sclerosing cholangitis (IgG4-SC) and primary sclerosing cholangitis (PSC), and while gut dysbiosis has been extensively studied in PSC, the role of the gut microbiota in IgG4-SC remains unknown. Herein, we aimed to evaluate alterations of the gut microbiome and metabolome in IgG4-SC and PSC. DESIGN: We performed 16S rRNA gene amplicon sequencing of faecal samples from 135 subjects with IgG4-SC (n=34), PSC (n=37) and healthy controls (n=64). A subset of the samples (31 IgG4-SC, 37 PSC and 45 controls) also underwent untargeted metabolomic profiling. RESULTS: Compared with controls, reduced alpha-diversity and shifted microbial community were observed in IgG4-SC and PSC. These changes were accompanied by differences in stool metabolomes. Importantly, despite some common variations in the microbiota composition and metabolic activity, integrative analyses identified distinct host-microbe associations in IgG4-SC and PSC. The disease-associated genera and metabolites tended to associate with the transaminases in IgG4-SC. Notable depletion of Blautia and elevated succinic acid may underlie hepatic inflammation in IgG4-SC. In comparison, potential links between the microbial or metabolic signatures and cholestatic parameters were detected in PSC. Particularly, concordant decrease of Eubacterium and microbiota-derived metabolites, including secondary bile acids, implicated novel host-microbial metabolic pathways involving cholestasis of PSC. Interestingly, the predictive models based on metabolites were more effective in discriminating disease status than those based on microbes. CONCLUSIONS: Our data reveal that IgG4-SC and PSC possess divergent host-microbe interplays that may be involved in disease pathogenesis. These data emphasise the uniqueness of IgG4-SC.
Assuntos
Colangite Esclerosante , Colestase , Microbioma Gastrointestinal , Colangite Esclerosante/microbiologia , Humanos , Imunoglobulina G , Metaboloma , RNA Ribossômico 16S/genéticaRESUMO
BACKGROUND & AIMS: Pyruvate dehydrogenase (PDC)-E2 specific CD8+ T cells play a leading role in biliary destruction in PBC. However, there are limited data on the characterization of these autoantigen-specific CD8+ T cells, particularly in the liver. Herein, we aimed to identify pathogenic intrahepatic CD8+ T-cell subpopulations and investigate their immunobiology in PBC. METHODS: Phenotypic and functional analysis of intrahepatic T-cell subsets were performed by flow cytometry. CD103+ TRM cell frequency was evaluated by histological staining. The transcriptome and metabolome were analyzed by RNA-seq and liquid chromatography-mass spectrometry, respectively. Cytotoxicity of TRM cells against cholangiocytes was assayed in a 3D organoid co-culture system. Moreover, the longevity (long-term survival) of TRM cells in vivo was studied by 2-octynoic acid-BSA (2OA-BSA) immunization, Nudt1 conditional knock-out and adoptive co-transfer in a murine model. RESULTS: Intrahepatic CD103+ TRM (CD69+CD103+CD8+) cells were significantly expanded, hyperactivated, and potentially specifically reactive to PDC-E2 in patients with PBC. CD103+ TRM cell frequencies correlated with clinical and histological indices of PBC and predicted poor ursodeoxycholic acid response. NUDT1 blockade suppressed the cytotoxic effector functions of CD103+ TRM cells upon PDC-E2 re-stimulation. NUDT1 overexpression in CD8+ T cells promoted tissue-residence programming in vitro; inhibition or knockdown of NUDT1 had the opposite effect. Pharmacological blockade or genetic deletion of NUDT1 eliminated CD103+ TRM cells and alleviated cholangitis in mice immunized with 2OA-BSA. Significantly, NUDT1-dependent DNA damage resistance potentiates CD8+ T-cell tissue-residency via the PARP1-TGFßR axis in vitro. Consistently, PARP1 inhibition restored NUDT1-deficient CD103+ TRM cell durable survival and TGFß-Smad signaling. CONCLUSIONS: CD103+ TRM cells are the dominant population of PDC-E2-specific CD8+ T lymphocytes in the livers of patients with PBC. The role of NUDT1 in promoting pathogenic CD103+ TRM cell accumulation and longevity represents a novel therapeutic target in PBC. LAY SUMMARY: Primary biliary cholangitis (PBC) is a rare inflammatory condition of the bile ducts. It can be treated with ursodeoxycholic acid, but a large percentage of patients respond poorly to this treatment. Liver-infiltrating memory CD8+ T cells recognizing the PDC-E2 immunodominant epitope are critical in the pathogenesis of PBC. We identifed the key pathogenic CD8+ T cell subset, and worked out the mechanisms of its hyperactivation and longevity, which could be exploited therapeutically.
Assuntos
Linfócitos T CD8-Positivos , Cirrose Hepática Biliar , Animais , Camundongos , Autoantígenos , Epitopos Imunodominantes , Cirrose Hepática Biliar/genética , Oxirredutases , Piruvatos , Fator de Crescimento Transformador beta , Ácido Ursodesoxicólico/farmacologiaRESUMO
BACKGROUND & AIMS: Genome-wide association studies in primary biliary cholangitis (PBC) have failed to find X chromosome (chrX) variants associated with the disease. Here, we specifically explore the chrX contribution to PBC, a sexually dimorphic complex autoimmune disease. METHODS: We performed a chrX-wide association study, including genotype data from 5 genome-wide association studies (from Italy, United Kingdom, Canada, China, and Japan; 5244 case patients and 11,875 control individuals). RESULTS: Single-marker association analyses found approximately 100 loci displaying P < 5 × 10-4, with the most significant being a signal within the OTUD5 gene (rs3027490; P = 4.80 × 10-6; odds ratio [OR], 1.39; 95% confidence interval [CI], 1.028-1.88; Japanese cohort). Although the transethnic meta-analysis evidenced only a suggestive signal (rs2239452, mapping within the PIM2 gene; OR, 1.17; 95% CI, 1.09-1.26; P = 9.93 × 10-8), the population-specific meta-analysis showed a genome-wide significant locus in East Asian individuals pointing to the same region (rs7059064, mapping within the GRIPAP1 gene; P = 6.2 × 10-9; OR, 1.33; 95% CI, 1.21-1.46). Indeed, rs7059064 tags a unique linkage disequilibrium block including 7 genes: TIMM17B, PQBP1, PIM2, SLC35A2, OTUD5, KCND1, and GRIPAP1, as well as a superenhancer (GH0XJ048933 within OTUD5) targeting all these genes. GH0XJ048933 is also predicted to target FOXP3, the main T-regulatory cell lineage specification factor. Consistently, OTUD5 and FOXP3 RNA levels were up-regulated in PBC case patients (1.75- and 1.64-fold, respectively). CONCLUSIONS: This work represents the first comprehensive study, to our knowledge, of the chrX contribution to the genetics of an autoimmune liver disease and shows a novel PBC-related genome-wide significant locus.
Assuntos
Cromossomos Humanos X/genética , Predisposição Genética para Doença/genética , Cirrose Hepática Biliar/genética , Adulto , Povo Asiático/genética , Proteínas de Transporte/genética , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Endopeptidases/genética , Feminino , Fatores de Transcrição Forkhead/genética , Loci Gênicos/genética , Predisposição Genética para Doença/etnologia , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Masculino , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas de Transporte de Monossacarídeos/genética , Razão de Chances , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Canais de Potássio Shal/genética , População Branca/genéticaRESUMO
BACKGROUND AND AIMS: The diverse inflammatory response found in the liver of patients with autoimmune hepatitis (AIH) is well established, but identification of potentially pathogenic subpopulations has proven enigmatic. APPROACH AND RESULTS: We report herein that CD69+ CD103+ CD8+ tissue-resident memory T cells (TRM ) are significantly increased in the liver of patients with AIH compared to chronic hepatitis B, NAFLD, and healthy control tissues. In addition, there was a significant statistical correlation between elevation of CD8+ TRM cells and AIH disease severity. Indeed, in patients with successful responses to immunosuppression, the frequencies of such hepatic CD8+ TRM cells decreased significantly. CD69+ CD8+ and CD69+ CD103+ CD8+ T cells, also known as CD8+ TRM cells, reflect tissue residency and are well known to provide intense immune antigenic responses. Hence, it was particularly interesting that patients with AIH also manifest an elevated expression of IL-15 and TGF-ß on inflammatory cells, and extensive hepatic expression of E-cadherin; these factors likely contribute to the development and localization of CD8+ TRM cells. Based on these data and, in particular, the relationships between disease severity and CD8+ TRM cells, we studied the mechanisms involved with glucocorticoid (GC) modulation of CD8+ TRM cell expansion. Our data reflect that GCs in vitro inhibit the expansion of CD8+ TRM cells induced by IL-15 and TGF-ß and with direct down-regulation of the nuclear factor Blimp1 of CD8+ TRM cells. CONCLUSIONS: Our data suggest that CD8+ TRM cells play a critical role in the pathogenesis of AIH, and GCs attenuate hepatic inflammation through direct inhibition of CD8+ TRM cell expansion.
Assuntos
Hepatite Autoimune/imunologia , Fígado/patologia , Células T de Memória/imunologia , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biópsia , Antígenos CD8/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Feminino , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Voluntários Saudáveis , Hepatite B Crônica/imunologia , Hepatite B Crônica/patologia , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/patologia , Humanos , Cadeias alfa de Integrinas/metabolismo , Lectinas Tipo C/metabolismo , Fígado/imunologia , Masculino , Células T de Memória/efeitos dos fármacos , Células T de Memória/metabolismo , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/antagonistas & inibidores , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Índice de Gravidade de DoençaRESUMO
BACKGROUNDS & AIMS: Primary biliary cholangitis (PBC) is a chronic liver disease in which autoimmune destruction of the small intrahepatic bile ducts eventually leads to cirrhosis. Many patients have inadequate response to licensed medications, motivating the search for novel therapies. Previous genome-wide association studies (GWAS) and meta-analyses (GWMA) of PBC have identified numerous risk loci for this condition, providing insight into its aetiology. We undertook the largest GWMA of PBC to date, aiming to identify additional risk loci and prioritise candidate genes for in silico drug efficacy screening. METHODS: We combined new and existing genotype data for 10,516 cases and 20,772 controls from 5 European and 2 East Asian cohorts. RESULTS: We identified 56 genome-wide significant loci (20 novel) including 46 in European, 13 in Asian, and 41 in combined cohorts; and a 57th genome-wide significant locus (also novel) in conditional analysis of the European cohorts. Candidate genes at newly identified loci include FCRL3, INAVA, PRDM1, IRF7, CCR6, CD226, and IL12RB1, which each play key roles in immunity. Pathway analysis reiterated the likely importance of pattern recognition receptor and TNF signalling, JAK-STAT signalling, and differentiation of T helper (TH)1 and TH17 cells in the pathogenesis of this disease. Drug efficacy screening identified several medications predicted to be therapeutic in PBC, some of which are well-established in the treatment of other autoimmune disorders. CONCLUSIONS: This study has identified additional risk loci for PBC, provided a hierarchy of agents that could be trialled in this condition, and emphasised the value of genetic and genomic approaches to drug discovery in complex disorders. LAY SUMMARY: Primary biliary cholangitis (PBC) is a chronic liver disease that eventually leads to cirrhosis. In this study, we analysed genetic information from 10,516 people with PBC and 20,772 healthy individuals recruited in Canada, China, Italy, Japan, the UK, or the USA. We identified several genetic regions associated with PBC. Each of these regions contains several genes. For each region, we used diverse sources of evidence to help us choose the gene most likely to be involved in causing PBC. We used these 'candidate genes' to help us identify medications that are currently used for treatment of other conditions, which might also be useful for treatment of PBC.
Assuntos
Estudo de Associação Genômica Ampla/estatística & dados numéricos , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/genética , Estudo de Associação Genômica Ampla/métodos , HumanosRESUMO
OBJECTIVE: The significance of the liver-microbiome axis has been increasingly recognised as a major modulator of autoimmunity. The aim of this study was to take advantage of a large well-defined corticosteroids treatment-naïve group of patients with autoimmune hepatitis (AIH) to rigorously characterise gut dysbiosis compared with healthy controls. DESIGN: We performed a cross-sectional study of individuals with AIH (n=91) and matched healthy controls (n=98) by 16S rRNA gene sequencing. An independent cohort of 28 patients and 34 controls was analysed to validate the results. All the patients were collected before corticosteroids therapy. RESULTS: The gut microbiome of steroid treatment-naïve AIH was characterised with lower alpha-diversity (Shannon and observed operational taxonomic units, both p<0.01) and distinct overall microbial composition compared with healthy controls (p=0.002). Depletion of obligate anaerobes and expansion of potential pathobionts including Veillonella were associated with disease status. Of note, Veillonella dispar, the most strongly disease-associated taxa (p=8.85E-8), positively correlated with serum level of aspartate aminotransferase and liver inflammation. Furthermore, the combination of four patients with AIH-associated genera distinguished AIH from controls with an area under curves of approximately 0.8 in both exploration and validation cohorts. In addition, multiple predicted functional modules were altered in the AIH gut microbiome, including lipopolysaccharide biosynthesis as well as metabolism of amino acids that can be processed by bacteria to produce immunomodulatory metabolites. CONCLUSION: Our study establishes compositional and functional alterations of gut microbiome in AIH and suggests the potential for using gut microbiota as non-invasive biomarkers to assess disease activity.
Assuntos
Disbiose/complicações , Disbiose/microbiologia , Microbioma Gastrointestinal , Hepatite Autoimune/complicações , Hepatite Autoimune/microbiologia , Adolescente , Adulto , Idoso , Aspartato Aminotransferases/sangue , Estudos de Casos e Controles , Clostridiales , Estudos Transversais , Feminino , Hepatite Autoimune/sangue , Humanos , Lactobacillus , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Veillonella , Adulto JovemRESUMO
The genetic association of primary biliary cholangitis with major histocompatibility complex (MHC) has been widely confirmed among different ethnicities. To map specific MHC region variants associated with PBC in a Han Chinese cohort, we imputed HLA antigens and amino acids (AA) in 1126 PBC cases and 1770 healthy control subjects using a Han-MHC reference database. We demonstrate that HLA-DRB1 and/or HLA-DQB1 contributed the strongest signals, and that HLA-DPB1 was a separate independent locus. Regression analyses with classical HLA alleles indicate that HLA-DQB1*03:01 or HLA-DQß1-Pro55, HLA-DPB1*17:01 or HLA-DPß1-Asp84 and HLA-DRB1*08:03 could largely explain MHC association with PBC. Forward stepwise regression analyses with HLA amino acid variants localize the major signals to HLA-DRß1-Ala74, HLA-DQß1-Pro55 and HLA-DPß1-Asp84. Electrostatic potential calculations implicated AA variations at HLA-DQß1 position 55 and HLA-DPß1 position 84 as critical to peptide binding properties. Furthermore, although several critical Han Chinese AA variants differed from those shown in European populations, the predicted effects on antigen binding are likely to be very similar or identical and underlie the major component of MHC association with PBC.
Assuntos
Povo Asiático/genética , Mapeamento Cromossômico , Predisposição Genética para Doença , Variação Genética , Antígenos HLA/genética , Cirrose Hepática Biliar/etiologia , Alelos , Estudos de Casos e Controles , China/epidemiologia , Genótipo , Antígenos HLA/imunologia , Humanos , Cirrose Hepática Biliar/epidemiologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Anti-nuclear antibodies to speckled 100 kDa (sp100) and glycoprotein 210 (gp210) are specific serologic markers of primary biliary cholangitis (PBC) of uncertain/controversial clinical or prognostic significance. To study the genetic determinants associated with sp100 and gp210 autoantibody subphenotypes, we performed a genome-wide association analysis of 930 PBC cases based on their autoantibody status, followed by a replication study in 1,252 PBC cases. We confirmed single-nucleotide polymorphisms rs492899 (P = 3.27 × 10-22 ; odds ratio [OR], 2.90; 95% confidence interval [CI], 2.34-3.66) and rs1794280 (P = 5.78 × 10-28 ; OR, 3.89; 95% CI, 3.05-4.96) in the human major histocompatibility complex (MHC) region associated with the sp100 autoantibody. However, no genetic variant was identified as being associated with the gp210 autoantibody. To further define specific classical human leukocyte antigen (HLA) alleles or amino acids associated with the sp100 autoantibody, we imputed 922 PBC cases (211 anti-sp100-positive versus 711 negative cases) using a Han Chinese MHC reference database. Conditional analysis identified that HLA-DRß1-Asn77/Arg74, DRß1-Ser37, and DPß1-Lys65 were major determinants for sp100 production. For the classical HLA alleles, the strongest association was with DRB1*03:01 (P = 1.51 × 10-9 ; OR, 2.97; 95% CI, 2.06-4.29). Regression analysis with classical HLA alleles identified DRB1*03:01, DRB1*15:01, DRB1*01, and DPB1*03:01 alleles can explain most of the HLA association with sp100 autoantibody. Conclusion: This study indicated significant genetic predisposition to the sp100 autoantibody, but not the gp210 autoantibody, subphenotype in PBC patients. Additional studies will be necessary to determine if these findings have clinical significance to PBC pathogenesis and/or therapeutics.
Assuntos
Anticorpos Antinucleares/genética , Antígenos Nucleares/imunologia , Autoantígenos/imunologia , Cirrose Hepática Biliar/genética , Idoso , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Cirrose Hepática Biliar/imunologia , Masculino , Pessoa de Meia-IdadeRESUMO
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with non-suppurative destruction of the intrahepatic bile ducts. The interplay of genetics and environmental triggers contributes to the onset of the disease and subsequently results in cholestasis and progressive fibrosis. Recently, genome-wide association studies (GWAS) have identified multiple genes influencing the susceptibility to PBC in HLA and non-HLA loci. However, it is estimated that the known risk variants merely account for no more than 20% of the heritability of PBC and causes of the remaining heritability remain uncertain. Increasing evidence suggests that the presence of epigenetic abnormalities may explain the "missing heritability" that cannot be captured by GWAS. Among these epigenetic mechanisms, DNA methylation, histone modification, and noncoding RNAs (i.e. miRNA and lncRNA) are involved in the pathogenesis of PBC. Additionally, telomere dysregulation in biliary epithelial cells (BECs) may play a role in disease onset, whereas a deficiency in sex chromosome and skewed gene expression in the X chromosome may to some extent explain the female dominance in PBC.
Assuntos
Epigênese Genética , Epigenômica , Cirrose Hepática Biliar/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , HumanosRESUMO
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease with an immunopathogenesis that includes highly differentiated cytotoxic T cell infiltration in portal areas. We have taken advantage of a large and well-defined cohort of patients with PBC, AIH, chronic hepatitis virus, and healthy controls to study for the presence of highly differentiated T cells which express the killer cell lectin-like receptor G1 (KLRG1). Such studies were performed using both liver and peripheral blood mononuclear cells. In particular, gene expression data (GSE79850) from 16 PBC patients stratified according to future risk of liver transplantation were analyzed for markers of highly differentiated cytotoxic T cells. Liver biopsy samples from 44 PBC patients were studied by immunohistochemistry and a separate cohort of PBC blood samples were studied by flow cytometry. Gene expression data demonstrated correlation of increased KLRG1 and cytotoxic lymphocyte molecules, such as granzyme B (GZMB) and perforin (PRF1), to disease severity as measured by future risk of liver transplantation. Immunohistochemistry demonstrated abundant infiltration of KLRG1+ cells into liver portal areas (mean of 45% of infiltrating cells, range 25-75%) positively correlated with hepatic inflammatory (râ¯=â¯0.47, pâ¯=â¯0.001) and hepatic fibrosis (r = 0.34, p = 0.021) scores. KLRG1+ lymphocyte liver portal area infiltration was positively correlated with serum alkaline phosphatase (râ¯=â¯0.45, pâ¯=â¯0.005) and GGT (râ¯=â¯0.40, pâ¯=â¯0.014), and AST (r = 0.35, p = 0.033) levels. Mononuclear blood flow cytometry studies showed KLRG1+ lymphocytes had greater levels of cytotoxic molecules (granzyme B and perforin), inflammatory cytokines (IFN-γ and TNF-α) and inflammatory chemokine receptors (CCR5 and CX3CR1) than KLRG1-counterparts. However, clearly the most significant data was that found in liver with the intense portal infiltrates that are unique to PBC. Conclusion: Highly cytotoxic KLRG1+ lymphocytes have invaded PBC liver portal areas. Liver KLRG1 gene expression and the abundance of KLRG1+ lymphocytes are positively correlated with disease biomarkers used as clinical trial outcome measures (liver transplantation and serum alkaline phosphatase), suggesting the targeting of KLRG1+ lymphocytes as a rational approach for PBC therapeutic drug development.
Assuntos
Lectinas Tipo C/metabolismo , Fígado/fisiologia , Receptores Imunológicos/metabolismo , Linfócitos T Citotóxicos/imunologia , Adulto , Fosfatase Alcalina/sangue , Células Cultivadas , Estudos de Coortes , Citocinas/metabolismo , Feminino , Fibrose , Granzimas/genética , Granzimas/metabolismo , Hepatite , Humanos , Lectinas Tipo C/genética , Fígado/patologia , Cirrose Hepática Biliar/imunologia , Masculino , Pessoa de Meia-Idade , Perforina/genética , Perforina/metabolismo , Receptores Imunológicos/genética , Risco , Transcriptoma , Regulação para CimaRESUMO
BACKGROUND AND AIMS: The most highly directed and specific autoantibody in human immunopathology is the serologic hallmark of primary biliary cholangitis (PBC), antimitochondrial antibodies (AMAs). However the clinical significance of finding a positive AMA, with normal alkaline phosphatase (ALP) remains enigmatic. METHODS: We took advantage of 169 consecutive outpatients who were identified as having a positive AMA, but normal ALP levels between January 2012 and January 2018. A liver biopsy was performed on 67/169 of these AMA positive normal ALP patients. RESULTS: In all 169 patients we reconfirmed the AMA and also performed anti-gp210 and anti-sp100, liver stiffness (LSM) assessed by vibration-controlled transient elastography (VCTE), an abdominal computed tomography (CT) scan, and either a magnetic resonance imaging (MRI) or ultrasound. The liver biopsies were reviewed by two unbiased observers. 87.6% of the 169 patients were females with a mean age of 46; the median AMA titer 1:320; an elevated serum IgM was found in 53.3%. Importantly, in patients with a liver biopsy, 55ï¼82.1%ï¼out of 67 had varying degrees of cholangitis activity, diagnostic of PBC. CONCLUSION: In patients who were AMA-positive but had normal ALP levels, more than 80% were associated with histological classic PBC. These data emphasize the importance of a positive AMA, even with a normal ALP and also question the role of ALP as a sole surrogate marker of cholangitis.
Assuntos
Fosfatase Alcalina/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/imunologia , Mitocôndrias/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Autoimunes/sangue , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Biomarcadores , Biópsia , Feminino , Humanos , Cirrose Hepática Biliar/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
There is increasing awareness of the immunologic roles of liver mononuclear populations, including myeloid-derived suppressor cells (MDSCs). We took advantage of a large well-defined cohort of 148 patients with liver inflammation and 45 healthy controls to focus on the qualitative and quantitative characteristics of MDSCs. We investigated the frequency, phenotype, and functional capacities of MDSCs by using peripheral blood MDSCs in a cohort of 55 patients with primary biliary cholangitis (PBC), 40 with autoimmune hepatitis, 39 with chronic hepatitis B, 14 with nonalcoholic fatty liver disease, and 45 healthy controls. This was followed by a liver-targeted determination in 27 patients with PBC, 27 with autoimmune hepatitis, 20 with chronic hepatitis B, 14 with nonalcoholic fatty liver disease, and 6 controls. We then focused on mechanisms of this expansion with PBC as an example, using both ursodeoxycholic acid-naive and treated patients. HLA-DR-/low CD33+ CD11b+ CD14+ CD15- monocytic MDSCs were elevated in diseases characterized by liver inflammation compared to healthy controls. Using PBC as a focus, there was a significant correlation between levels of circulating MDSCs and disease-related biochemical markers (alkaline phosphatase, total bilirubin). We found higher amounts of MDSCs in patients with PBC who were responsive to ursodeoxycholic acid. MDSCs from PBC were found to manifest a potent immunosuppressive function. There was a significant correlation in the accumulation of hepatic MDSCs in the inflamed lesions of PBC with histologic changes, such as fibrosis. We also found that cysteine-rich protein 61 (CCN1), a highly expressed protein in impaired cholangiocytes and hepatocytes, contributes to MDSC expansion and MDSC inducible nitric oxide synthase-associated immune suppression. CONCLUSION: CCN1 modulates expansion and a suppressive function of MDSCs. Our data highlight the potential functions of CCN1 on MDSCs and suggest therapeutic implications in inflammatory liver diseases. (Hepatology HEPATOLOGY 2018;67:232-246).