Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Hered ; 88(1): 68-78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100034

RESUMO

INTRODUCTION: The role of ARRB2 in cardiovascular disease has recently gained increasing attention. However, the association between ARRB2 polymorphisms and heart failure (HF) has not yet been investigated. METHODS: A total of 2,386 hospitalized patients with chronic HF were enrolled as the first cohort and followed up for a mean period of 20.2 months. Meanwhile, ethnically and geographically matched 3,000 individuals without evidence of HF were included as healthy controls. We genotyped the common variant in ARRB2 gene to identify the association between variant and HF. A replicated independent cohort enrolling 837 patients with chronic HF was applied to validate the observed association. A series of function analyses were conducted to illuminate the underlying mechanism. RESULTS: We identified a common variant rs75428611 associated with the prognosis of HF in two-stage population: adjusted p = 0.001, hazard ratio (HR) = 1.31 (1.11-1.54) in additive model and adjusted p = 0.001, HR = 1.39 (1.14-1.69) in dominant model in first-stage population; adjusted p = 0.04, HR = 1.41 (1.02-1.95) in additive model and adjusted p = 0.03, HR = 1.51 (1.03-2.20) in dominant model in replicated stage. However, rs75428611 did not significantly associate with the risk of HF. Functional analysis indicated that rs75428611-G allele increased the promoter activity and the mRNA expression level of ARRB2 by facilitating transcription factor SRF binding but not the A allele. CONCLUSIONS: Our findings demonstrated that rs75428611 in promoter of ARRB2 was associated with the risk of HF mortality. It is a promising potential treatment target for HF.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Prognóstico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Polimorfismo Genético , Doenças Cardiovasculares/genética , Doença Crônica , Regiões Promotoras Genéticas/genética , beta-Arrestina 2/genética
2.
Genes (Basel) ; 13(12)2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36553665

RESUMO

Zinc (Zn)-regulated and iron (Fe)-regulated transporter-like proteins (ZIP) are key players involved in the accumulation of cadmium (Cd) and Zn in plants. Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (S. plumbizincicola) is a Crassulaceae Cd/Zn hyperaccumulator found in China, but the role of ZIPs in S. plumbizincicola remains largely unexplored. Here, we identified 12 members of ZIP family genes by transcriptome analysis in S. plumbizincicola and cloned the SpZIP2 gene with functional analysis. The expression of SpZIP2 in roots was higher than that in the shoots, and Cd stress significantly decreased its expression in the roots but increased its expression in leaves. Protein sequence characteristics and structural analysis showed that the content of alanine and leucine residues in the SpZIP2 sequence was higher than other residues, and several serine, threonine and tyrosine sites can be phosphorylated. Transmembrane domain analysis showed that SpZIP2 has the classic eight transmembrane regions. The evolutionary analysis found that SpZIP2 is closely related to OsZIP2, followed by AtZIP11, OsZIP1 and AtZIP2. Sequence alignment showed that most of the conserved sequences among these members were located in the transmembrane regions. A further metal sensitivity assay using yeast mutant Δyap1 showed that the expression of SpZIP2 increased the sensitivity of the transformants to Cd but failed to change the resistance to Zn. The subsequent ion content determination showed that the expression of SpZIP2 increased the accumulation of Cd in yeast. Subcellular localization showed that SpZIP2 was localized to membrane systems, including the plasma membrane and endoplasmic reticulum. The above results indicate that ZIP member SpZIP2 participates in the uptake and accumulation of Cd into cells and might contribute to Cd hyperaccumulation in S. plumbizincicola.


Assuntos
Cádmio , Saccharomyces cerevisiae , Cádmio/toxicidade , Cádmio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Zinco , Metais , Clonagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA