Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 145(17): 1339-1355, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35061545

RESUMO

BACKGROUND: The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice. METHODS: Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Using rat and pig models of ischemic heart failure, we aimed to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. RESULTS: Temporal bulk and single-cell RNA sequencing and further biochemical validations of mature human induced pluripotent stem cell-derived cardiomyocytes treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population at 48 hours after infection with 4F, which was associated mainly with sarcomere disassembly and metabolic reprogramming (n=3/time point/group). Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic nonintegrating lentivirus (NIL) encoding 4F; each is driven by a TNNT2 (cardiac troponin T isoform 2) promoter (TNNT2-4Fpolycistronic-NIL). TNNT2-4Fpolycistronic-NIL or control virus was injected intramyocardially 1 week after myocardial infarction in rats (n=10/group) or pigs (n=6-7/group). Four weeks after injection, TNNT2-4Fpolycistronic-NIL-treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus-treated animals. At 4 months after treatment, rats that received TNNT2-4Fpolycistronic-NIL still showed a sustained improvement in cardiac function and no obvious development of cardiac arrhythmias or systemic tumorigenesis (n=10/group). CONCLUSIONS: This study provides mechanistic insights into the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors owing to the use of a novel transient and cardiomyocyte-specific viral construct.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Ciclo Celular , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Ratos , Volume Sistólico , Suínos , Função Ventricular Esquerda
2.
Mol Cell Biochem ; 478(6): 1245-1250, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36282351

RESUMO

The loss of cardiomyocytes after myocardial infarction (MI) leads to heart failure. Recently, we demonstrated that transient overexpression of 4 cell cycle factors (4F), using a polycistronic non-integrating lentivirus (TNNT2-4F-NIL) resulted in significant improvement in cardiac function in a rat model of MI. Yet, it is crucial to demonstrate the reversal of the heart failure-related pathophysiological manifestations, such as renin-angiotensin-aldosterone system activation (RAAS). To assess that, Fisher 344 rats were randomized to receive TNNT2-4F-NIL or control virus seven days after coronary occlusion for 2 h followed by reperfusion. 4 months after treatment, N-terminal pro-brain natriuretic peptide, plasma renin activity, and aldosterone levels returned to the normal levels in rats treated with TNNT2-4F-NIL but not in vehicle-treated rats. Furthermore, the TNNT2-4F-NIL-treated group showed significantly less liver and kidney congestion than vehicle-treated rats. Thus, we conclude that in rat models of MI, TNNT2-4F-NIL reverses RAAS activation and subsequent systemic congestion.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Ratos , Aldosterona/metabolismo , Ciclo Celular , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo , Rim/metabolismo , Infarto do Miocárdio/metabolismo , Renina/genética , Renina/metabolismo , Sistema Renina-Angiotensina
3.
Curr Opin Cardiol ; 37(3): 193-200, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35612934

RESUMO

PURPOSE OF REVIEW: Clinical trials of adult cell therapy for chronic heart failure are often misrepresented in an unfairly negative light. Results are claimed to be 'negative', 'incremental', or 'modest'. This common misconception is detrimental to medical progress and needs to be dispelled. RECENT FINDINGS: Contrary to the false narrative of scientific and lay media, the outcome of recent trials of cell therapy for heart failure has been encouraging and even exciting. Specifically, with the exception of ALLSTAR, in the past 2 years several Phase II-III double-blind, randomized trials have yielded impressive results, demonstrating not just safety but also salubrious effects on cardiac function (MSC-HF) or clinical events (MSC-HF, CONCERT-HF, and DREAM-HF) for at least 1 year after a single administration of cells. Such outcomes were neither incremental nor minor, nor achievable with one dose of any other nondevice therapy for heart failure. SUMMARY: The oft-repeated assertion that cell therapy does not benefit patients with chronic heart failure is based on a misrepresentation of the literature and is contrary to the available scientific evidence. Although the mechanism of action of cell therapy is unclear, research on its use in heart failure should continue, as only rigorous, well designed, Phase III trials can definitely confirm or refute its efficacy.


Assuntos
Insuficiência Cardíaca , Adulto , Terapia Baseada em Transplante de Células e Tecidos , Doença Crônica , Método Duplo-Cego , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
4.
Mol Cell Biochem ; 477(2): 431-444, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783963

RESUMO

Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Administração Intravenosa , Aloenxertos , Animais , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Endogâmicos F344
5.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31310161

RESUMO

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Assuntos
Biomimética/métodos , Ventrículos do Coração/ultraestrutura , Função Ventricular/fisiologia , Adulto , Animais , Feminino , Coração/fisiologia , Ventrículos do Coração/citologia , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Miocárdio/citologia , Miocárdio/ultraestrutura , Técnicas de Cultura de Órgãos/métodos , Suínos , Transcriptoma/fisiologia
6.
Cardiovasc Drugs Ther ; 35(1): 113-123, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33079319

RESUMO

PURPOSE: Plasma membranes constitute a gathering point for lipids and signaling proteins. Lipids are known to regulate the location and activity of signaling proteins under physiological and pathophysiological conditions. Membrane lipid therapies (MLTs) that gradually modify lipid content of plasma membranes have been developed to treat chronic disease; however, no MLTs have been developed to treat acute conditions such as reperfusion injury following myocardial infarction (MI) and percutaneous coronary intervention (PCI). A fusogenic nanoliposome (FNL) that rapidly incorporates exogenous unsaturated lipids into endothelial cell (EC) membranes was developed to attenuate reperfusion-induced protein signaling. We hypothesized that administration of intracoronary (IC) FNL-MLT interferes with EC membrane protein signaling, leading to reduced microvascular dysfunction and infarct size (IS). METHODS: Using a myocardial ischemia/reperfusion swine model, the efficacy of FNL-MLT in reducing IS following a 60-min coronary artery occlusion was tested. Animals were randomized to receive IC Ringer's lactate solution with or without 10 mg/mL/min of FNLs for 10 min prior to reperfusion (n = 6 per group). RESULTS: The IC FNL-MLT reduced IS (25.45 ± 16.4% vs. 49.7 ± 14.1%, P < 0.02) and enhanced regional myocardial blood flow (RMBF) in the ischemic zone at 15 min of reperfusion (2.13 ± 1.48 mL/min/g vs. 0.70 ± 0.43 mL/min/g, P < 0.001). The total cumulative plasma levels of the cardiac injury biomarker cardiac troponin I (cTnI) were trending downward but were not significant (999.3 ± 38.7 ng/mL vs. 1456.5 ± 64.8 ng/mL, P = 0.1867). However, plasma levels of heart-specific fatty acid binding protein (hFABP), another injury biomarker, were reduced at 2 h of reperfusion (70.3 ± 38.0 ng/mL vs. 137.3 ± 58.2 ng/mL, P = 0.0115).  CONCLUSION: The IC FNL-MLT reduced IS compared to vehicle in this swine model. The FNL-MLT maybe a promising adjuvant to PCI in the treatment of acute MI.


Assuntos
Lipídeos de Membrana/administração & dosagem , Lipídeos de Membrana/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Nanopartículas/química , Animais , Modelos Animais de Doenças , Portadores de Fármacos , Células Endoteliais/citologia , Feminino , Lipossomos/química , Camundongos , Transdução de Sinais , Suínos
7.
Can J Physiol Pharmacol ; 99(2): 129-139, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32937086

RESUMO

The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.


Assuntos
Cardiopatias/metabolismo , Miocárdio/patologia , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-kit
8.
Toxicol Appl Pharmacol ; 406: 115213, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877659

RESUMO

The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 µm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 µM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.


Assuntos
Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Coração/efeitos dos fármacos , Modelos Biológicos , Técnicas de Cultura de Tecidos , Adulto , Idoso , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Feminino , Coração/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Suínos , Trastuzumab/efeitos adversos
9.
Basic Res Cardiol ; 114(1): 3, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446837

RESUMO

Preclinical investigations support the concept that donor cells more oriented towards a cardiovascular phenotype favor repair. In light of this philosophy, we previously identified HDAC1 as a mediator of cardiac mesenchymal cell (CMC) cardiomyogenic lineage commitment and paracrine signaling potency in vitro-suggesting HDAC1 as a potential therapeutically exploitable target to enhance CMC cardiac reparative capacity. In the current study, we examined the effects of pharmacologic HDAC1 inhibition, using the benzamide class 1 isoform-selective HDAC inhibitor entinostat (MS-275), on CMC cardiomyogenic lineage commitment and CMC-mediated myocardial repair in vivo. Human CMCs pre-treated with entinostat or DMSO diluent control were delivered intramyocardially in an athymic nude rat model of chronic ischemic cardiomyopathy 30 days after a reperfused myocardial infarction. Indices of cardiac function were assessed by echocardiography and left ventricular (LV) Millar conductance catheterization 35 days after treatment. Compared with naïve CMCs, entinostat-treated CMCs exhibited heightened capacity for myocyte-like differentiation in vitro and superior ability to attenuate LV remodeling and systolic dysfunction in vivo. The improvement in CMC therapeutic efficacy observed with entinostat pre-treatment was not associated with enhanced donor cell engraftment, cardiomyogenesis, or vasculogenesis, but instead with more efficient inhibition of myocardial fibrosis and greater increase in myocyte size. These results suggest that HDAC inhibition enhances the reparative capacity of CMCs, likely via a paracrine mechanism that improves ventricular compliance and contraction and augments myocyte growth and function.


Assuntos
Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Benzamidas/farmacologia , Fibrose , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Piridinas/farmacologia , Ratos , Ratos Nus , Recuperação de Função Fisiológica
10.
Circ Res ; 118(7): 1091-105, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838790

RESUMO

RATIONALE: Cardiac progenitor cells (CPCs) improve left ventricular remodeling and function after acute or chronic myocardial infarction. However, the long-term (>5 weeks) effects, potential tumorigenicity, and fate of transplanted CPCs are unknown. OBJECTIVE: To assess the outcome of CPC therapy at 1 year. METHODS AND RESULTS: Female rats underwent a 90-minute coronary occlusion; 4 hours after reperfusion, they received intracoronarily vehicle or 1 million male, syngeneic CPCs. One year later, CPC-treated rats exhibited smaller scars and more viable myocardium in the risk region, along with improved left ventricular remodeling and regional and global left ventricular function. No tumors were observed. Some transplanted (Y-chromosome(POS)) CPCs (or their progeny) persisted and continued to proliferate, but they failed to acquire a mature cardiomyocyte phenotype and were too few (4-8% of nuclei) to account for the benefits of CPC therapy. Surprisingly, CPC transplantation triggered a prolonged proliferative response of endogenous cells, resulting in increased formation of endothelial cells and Y-chromosome(NEG) CPCs for 12 months and increased formation, for at least 7 months, of small cells that expressed cardiomyocytic proteins (α-sarcomeric actin) but did not have a mature cardiomyocyte phenotype. CONCLUSIONS: The beneficial effects of CPCs on left ventricular remodeling and dysfunction are sustained for at least 1 year and thus are likely to be permanent. Because transplanted CPCs do not differentiate into mature myocytes, their major mechanism of action must involve paracrine actions. These paracrine mechanisms could be very prolonged because some CPCs engraft, proliferate, and persist at 1 year. This is the first report that transplantation of any cell type in the heart induces a proliferative response that lasts at least 1 year. The results strongly support the safety and clinical utility of CPC therapy.


Assuntos
Células-Tronco Adultas/transplante , Infarto do Miocárdio/terapia , Células-Tronco Adultas/química , Células-Tronco Adultas/citologia , Animais , Contagem de Células , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Replicação do DNA , Feminino , Hemodinâmica , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Hibridização in Situ Fluorescente , Antígenos Comuns de Leucócito/análise , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-kit/análise , Ratos , Ratos Endogâmicos F344 , Método Simples-Cego , Fatores de Tempo , Ultrassonografia , Disfunção Ventricular Esquerda/etiologia
11.
Circ Res ; 119(5): 635-51, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27364016

RESUMO

RATIONALE: The effects of c-kit(POS) cardiac progenitor cells (CPCs, and adult cell therapy in general) on left ventricular (LV) function have been regarded as modest or inconsistent. OBJECTIVE: To determine whether 3 CPC infusions have greater efficacy than 1 infusion. METHODS AND RESULTS: Rats with a 30-day-old myocardial infarction received 1 or 3 CPC infusions into the LV cavity, 35 days apart. Compared with vehicle-treated rats, the single-dose group exhibited improved LV function after the first infusion (consisting of CPCs) but not after the second and third (vehicle). In contrast, in the multiple-dose group, regional and global LV function improved by a similar degree after each CPC infusion, resulting in greater cumulative effects. For example, the total increase in LV ejection fraction was approximately triple in the multiple-dose group versus the single-dose group (P<0.01). The multiple-dose group also exhibited more viable tissue and less scar, less collagen in the risk and noninfarcted regions, and greater myocyte density in the risk region. CONCLUSIONS: This is the first demonstration that repeated CPC administrations are markedly more effective than a single administration. The concept that the full effects of CPCs require repeated doses has significant implications for both preclinical and clinical studies; it suggests that the benefits of cell therapy may be underestimated or even overlooked if they are measured after a single dose, and that repeated administrations are necessary to evaluate the effectiveness of a cell product properly. In addition, we describe a new method that enables studies of repeated cell administrations in rodents.


Assuntos
Infarto do Miocárdio/terapia , Miócitos Cardíacos/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Animais , Sobrevivência Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Feminino , Masculino , Infarto do Miocárdio/patologia , Ratos , Ratos Endogâmicos F344 , Transplante de Células-Tronco/tendências , Função Ventricular Esquerda/fisiologia
13.
Circ Res ; 116(4): 572-86, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25499773

RESUMO

RATIONALE: Despite 4 decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. OBJECTIVE: To develop a multicenter, randomized, controlled, clinical trial-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. METHODS AND RESULTS: With support from the National Heart, Lung, and Blood Institute, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning to reduce infarct size in 3 species (at 2 sites/species): mice (n=22-25 per group), rabbits (n=11-12 per group), and pigs (n=13 per group). During this validation phase, (1) we established protocols that gave similar results between centers and confirmed that ischemic preconditioning significantly reduced infarct size in all species and (2) we successfully established a multicenter structure to support CAESAR's operations, including 2 surgical centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center-all with the oversight of an external Protocol Review and Monitoring Committee. CONCLUSIONS: CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter, randomized, controlled clinical trials. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols ("CAESAR protocols") for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible.


Assuntos
Fármacos Cardiovasculares/farmacologia , Avaliação Pré-Clínica de Medicamentos , Precondicionamento Isquêmico Miocárdico/métodos , Infarto do Miocárdio/prevenção & controle , National Heart, Lung, and Blood Institute (U.S.) , Projetos de Pesquisa , Animais , Biomarcadores/sangue , Comportamento Cooperativo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/normas , Feminino , Guias como Assunto , Humanos , Precondicionamento Isquêmico Miocárdico/normas , Masculino , Camundongos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/patologia , Miocárdio/patologia , Valor Preditivo dos Testes , Coelhos , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Especificidade da Espécie , Suínos , Fatores de Tempo , Troponina I/sangue , Estados Unidos
15.
Basic Res Cardiol ; 110(5): 503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150250

RESUMO

It is commonly thought that the optimal method for intracoronary administration of cells is to stop coronary flow during cell infusion, in order to prolong cell/vascular wall contact, enhance adhesion, and promote extravasation of cells into the interstitial space. However, occlusion of a coronary artery with a balloon involves serious risks of vascular damage and/or dissection, particularly in non-stented segments such as those commonly found in patients with heart failure. It remains unknown whether the use of the stop-flow technique results in improved donor cell retention. Acute myocardial infarction was produced in 14 pigs. One to two months later, pigs received 10 million indium-111 oxyquinoline (oxine)-labeled c-kit(pos) human cardiac stem cells (hCSCs) via intracoronary infusion with (n = 7) or without (n = 7) balloon inflation. Pigs received cyclosporine to prevent acute graft rejection. Animals were euthanized 24 h later and hearts harvested for radioactivity measurements. With the stop-flow technique, the retention of hCSCs at 24 h was 5.41 ± 0.80 % of the injected dose (n = 7), compared with 4.87 ± 0.62 % without coronary occlusion (n = 7), (P = 0.60). When cells are delivered intracoronarily in a clinically relevant porcine model of chronic ischemic cardiomyopathy, the use of the stop-flow technique does not result in greater myocardial cell retention at 24 h compared with non-occlusive infusion. These results have practical implications for the design of cell therapy trials. Our observations suggest that the increased risk of complications secondary to coronary manipulation and occlusion is not warranted.


Assuntos
Isquemia Miocárdica/cirurgia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Proteínas Proto-Oncogênicas c-kit , Sus scrofa
16.
Circulation ; 128(2): 122-31, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23757309

RESUMO

BACKGROUND: Relevant preclinical models are necessary for further mechanistic and translational studies of c-kit+ cardiac stem cells (CSCs). The present study was undertaken to determine whether intracoronary CSCs are beneficial in a porcine model of chronic ischemic cardiomyopathy. METHODS AND RESULTS: Pigs underwent a 90-minute coronary occlusion followed by reperfusion. Three months later, autologous CSCs (n=11) or vehicle (n=10) were infused into the infarct-related artery. At this time, all indices of left ventricular (LV) function were similar in control and CSC-treated pigs, indicating that the damage inflicted by the infarct in the 2 groups was similar; 1 month later, however, CSC-treated pigs exhibited significantly greater LV ejection fraction (echocardiography) (51.7±2.0% versus 42.9±2.3%, P<0.01), systolic thickening fraction in the infarcted LV wall, and maximum LV dP/dt, as well as lower LV end-diastolic pressure. Confocal microscopy showed clusters of small α-sarcomeric actin-positive cells expressing Ki67 in the scar of treated pigs, consistent with cardiac regeneration. The origin of these cycling myocytes from the injected cells was confirmed in 4 pigs that received enhanced green fluorescent protein -labeled CSCs, which were positive for the cardiac markers troponin I, troponin T, myosin heavy chain, and connexin-43. Some engrafted CSCs also formed vascular structures and expressed α-smooth muscle actin. CONCLUSIONS: Intracoronary infusion of autologous CSCs improves regional and global LV function and promotes cardiac and vascular regeneration in pigs with old myocardial infarction (scar). The results mimic those recently reported in humans (Stem Cell Infusion in Patients with Ischemic CardiOmyopathy [SCIPIO] trial) and establish this porcine model of ischemic cardiomyopathy as a useful and clinically relevant model for studying CSCs.


Assuntos
Cardiomiopatias/cirurgia , Vasos Coronários/fisiologia , Modelos Animais de Doenças , Isquemia Miocárdica/cirurgia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Cardiomiopatias/patologia , Células Cultivadas , Infusões Intra-Arteriais , Masculino , Isquemia Miocárdica/patologia , Miócitos Cardíacos/fisiologia , Suínos , Transplante Autólogo
17.
Front Oncol ; 14: 1397246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800393

RESUMO

Background: Newly identified as a radiological concept, interstitial lung abnormalities (ILA) is emerging as a prognostic factor for lung cancer. Yet, debates persist regarding the prognostic significance of ILA in lung cancer. Our inaugural meta-analysis aimed to investigate the correlation between ILA and lung cancer outcomes, offering additional insights for clinicians in predicting patient prognosis. Methods: Articles meeting the criteria were found through PubMed, the Cochrane Library, EMBASE, and Web of Science by February 29, 2024. The outcomes evaluated were the survival rates such as overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). Results: A total of 12 articles with 4416 patients were included in this meta-analysis. The pooled results showed that lung cancer patients with interstitial lung abnormalities had an inferior OS (n=11; HR=2.22; 95% CI=1.68-2.95; P<0.001; I2 = 72.0%; Ph<0.001), PFS (n=3; HR=1.59; 95% CI=1.08-2.32; P=0.017; I2 = 0%; Ph=0.772), and CSS (n=2; HR=4.00; 95% CI=1.94-8.25; P<0.001; I2 = 0%; Ph=0.594) than those without, however, the ILA was not significantly associated with the DFS (n=2; HR=2.07; 95% CI=0.94-7.02; P=0.066; I2 = 90.4%; Ph=0.001). Moreover, lung cancer patients with ILA were significantly correlated with male (OR=2.43; 95% CI=1.48-3.98; P<0.001), smoking history (OR=2.11; 95% CI=1.37-3.25; P<0.001), advanced age (OR=2.50; 95% CI=1.56-4.03; P<0.001), squamous carcinoma (OR=0.42; 95% CI=0.24-0.71; P=0.01), and EGFR mutation (OR=0.50; 95% CI=0.32-0.78; P=0.002). The correlation between ILA and race, stage, ALK, however, was not significant. Conclusion: ILA was a availability factors of prognosis in patients with lung cancers. These findings highlight the importance of early pulmonary fibrosis, namely ILA for prognosis in patients with lung cancer, and provide a partial rationale for future clinical work.

18.
Cardiovasc Res ; 120(2): 152-163, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38175760

RESUMO

AIMS: Gene therapies to induce cardiomyocyte (CM) cell cycle re-entry have shown a potential to treat subacute ischaemic heart failure (IHF) but have not been tested in the more relevant setting of chronic IHF. Our group recently showed that polycistronic non-integrating lentivirus encoding Cdk1/CyclinB1 and Cdk4/CyclinD1 (TNNT2-4Fpolycistronic-NIL) is effective in inducing CM cell cycle re-entry and ameliorating subacute IHF models and preventing the subsequent IHF-induced congestions in the liver, kidneys, and lungs in rats and pigs. Here, we aim to test the long-term efficacy of TNNT2-4Fpolycistronic-NIL in a rat model of chronic IHF, a setting that differs pathophysiologically from subacute IHF and has greater clinical relevance. METHODS AND RESULTS: Rats were subjected to a 2-h coronary occlusion followed by reperfusion; 4 weeks later, rats were injected intramyocardially with either TNNT2-4Fpolycistronic-NIL or LacZ-NIL. Four months post-viral injection, TNNT2-4Fpolycistronic-NIL-treated rats showed a significant reduction in scar size and a significant improvement in left ventricular (LV) systolic cardiac function but not in the LV dilatation associated with chronic IHF. A mitosis reporter system developed in our lab showed significant induction of CM mitotic activity in TNNT2-4Fpolycistronic-NIL-treated rats. CONCLUSION: This study demonstrates, for the first time, that TNNT2-4Fpolycistronic-NIL gene therapy induces CM cell cycle re-entry in chronic IHF and improves LV function, and that this salubrious effect is sustained for at least 4 months. Given the high prevalence of chronic IHF, these results have significant clinical implications for developing a novel treatment for this deadly disease.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Ratos , Animais , Suínos , Miócitos Cardíacos , Doença Crônica , Terapia Genética , Ciclo Celular
19.
J Biol Chem ; 287(40): 33720-32, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22879597

RESUMO

Intracoronary delivery of c-kit-positive human cardiac stem cells (hCSCs) is a promising approach to repair the infarcted heart, but it is severely limited by the poor survival of donor cells. Cobalt protoporphyrin (CoPP), a well known heme oxygenase 1 inducer, has been used to promote endogenous CO generation and protect against ischemia/reperfusion injury. Therefore, we determined whether preconditioning hCSCs with CoPP promotes CSC survival. c-kit-positive, lineage-negative hCSCs were isolated from human heart biopsies. Lactate dehydrogenase release assays demonstrated that preconditioning CSCs with CoPP markedly enhanced cell survival after oxidative stress induced by H(2)O(2), concomitant with up-regulation of heme oxygenase 1, COX-2, and anti-apoptotic proteins (BCL2, BCL2-A1, and MCL-1) and increased phosphorylation of NRF2. Apoptotic cytometric assays showed that pretreatment of CSCs with CoPP enhanced the cells' resistance to apoptosis induced by oxidative stress. Conversely, knocking down HO-1, COX-2, or NRF2 by shRNA gene silencing abrogated the cytoprotective effects of CoPP. Further, preconditioning CSCs with CoPP led to a global increase in release of cytokines, such as EGF, FGFs, colony-stimulating factors, and chemokine ligand. Conditioned medium from cells pretreated with CoPP conferred naive CSCs remarkable resistance to apoptosis, demonstrating that cytokines released by preconditioned cells play a key role in the anti-apoptotic effects of CoPP. Preconditioning CSCs with CoPP also induced an increase in the phosphorylation of Erk1/2, which are known to modulate multiple pro-survival genes. These results potentially provide a simple and effective strategy to enhance survival of CSCs after transplantation and, therefore, their efficacy in repairing infarcted myocardium.


Assuntos
Apoptose , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cardiopatias/tratamento farmacológico , Heme Oxigenase-1/química , Miocárdio/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Protoporfirinas/farmacologia , Células-Tronco/citologia , Humanos , L-Lactato Desidrogenase/metabolismo , Lentivirus/metabolismo , Modelos Genéticos , Isquemia Miocárdica/patologia , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo
20.
Stem Cell Rev Rep ; 19(7): 2429-2446, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500831

RESUMO

BACKGROUND: Although cell therapy provides benefits for outcomes of heart failure, the most optimal cell type to be used clinically remains unknown. Most of the cell products used for therapy in humans require in vitro expansion to obtain a suitable number of cells for treatment; however, the clinical background of the donor and limited starting material may result in the impaired proliferative and reparative capacity of the cells expanded in vitro. Wharton's jelly mesenchymal cells (WJ MSCs) provide a multitude of advantages over adult tissue-derived cell products for therapy. These include large starting tissue material, superior proliferative capacity, and disease-free donors. Thus, WJ MSC if effective would be the most optimal cell source for clinical use. OBJECTIVES: This study evaluated the therapeutic efficacy of Wharton's jelly (WJ) and bone marrow (BM) mesenchymal stromal cells (MSCs) in chronic ischemic cardiomyopathy in rats. METHODS: Human WJ MSCs and BM MSCs were expanded in vitro, characterized, and evaluated for therapeutic efficacy in a immunodeficient rat model of ischemic cardiomyopathy. Cardiac function was evaluated with hemodynamics and echocardiography. The extent of cardiac fibrosis, hypertrophy, and inflammation was assessed with histological analysis. RESULTS: In vitro analysis revealed that WJ MSCs and BM MSCs are morphologically and immunophenotypically indistinguishable. Nevertheless, the functional analysis showed that WJ MSCs have a superior proliferative capacity, less senescent phenotype, and distinct transcriptomic profile compared to BM MSC. WJ MSCs and BM MSC injected in rat hearts chronically after MI produced a small, but not significant improvement in heart structure and function. Histological analysis showed no difference in the scar size, collagen content, cardiomyocyte cross-sectional area, and immune cell count. CONCLUSIONS: Human WJ and BM MSC have a small but not significant effect on cardiac structure and function when injected intramyocardially in immunodeficient rats chronically after MI.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Isquemia Miocárdica , Geleia de Wharton , Adulto , Ratos , Humanos , Animais , Medula Óssea , Isquemia Miocárdica/terapia , Infarto do Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA